Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 206: 108225, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38147708

RESUMEN

The increased global food insecurity due to the growing population can be addressed with precision and sustainable agricultural practices. To tackle the issues regarding food insecurity, farmers used different agrochemicals that improved plant growth and protection. Among these agrochemicals, synthetic pesticides used for plant protection in the agricultural field have various disadvantages. Conventional applications of synthetic pesticides have drawbacks such as rapid degradation, poor solubility, and non-target effects, as well as increased pesticide runoff that pollutes the environment. Nanotechnology has evolved as a potential solution to increase agricultural productivity through the development of different nanoforms of agrochemicals such as nanopesticides, nano-fabricated fertilizers, nanocapsules, nanospheres, nanogels, nanofibers, nanomicelles, and nano-based growth promoters. Encapsulation of these pesticides inside the nanomaterials has provided good biocompatibility over conventional application by inhibiting the early degradation of active ingredients (AI), increasing the uptake and adhesion of pesticides, improving the stability, solubility, and permeability of the pesticides, and decreasing the environmental impacts due to the pesticide runoff. In this review, different nanoforms of encapsulated pesticides and their smart delivery systems; nanocarriers in RNA interference (RNAi) based pesticides; environmental fate, practical implications, management of nanopesticides; and future perspectives are discussed.


Asunto(s)
Nanoestructuras , Plaguicidas , Agricultura , Agroquímicos/farmacología , Nanotecnología , Plantas
2.
Environ Pollut ; 335: 122031, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37419203

RESUMEN

Hyperaccumulation of heavy metal in agricultural land has hampered yield of important crops globally. It has consequently deepened concerns regarding the burning issue of food security in the world. Among heavy metals, Chromium (Cr) is not needed for plant growth and found to pose detrimental effects on plants. Present study highlights the role of exogenous application of sodium nitroprusside (SNP, exogenous donor of NO) and silicon (Si) in alleviating detrimental ramification of Cr toxicity in Brassica juncea. The exposure of B. juncea to Cr (100 µM) under hydroponic system hampered the morphological parameters of plant growth like length and biomass and physiological parameters like carotenoid and chlorophyll contents. It also resulted in oxidative stress by disrupting the equilibrium between ROS production and antioxidant quenching leading to accumulation of ROS such as hydrogen peroxide (H2O2) and superoxide (O2•‾) radicle which causes lipid peroxidation. However, application of Si and SNP both individually and in combination counteracted oxidative stress due to Cr by regulating ROS accumulation and enhancing antioxidant metabolism by upregulation of antioxidant genes of DHAR, MDHAR, APX and GR. As the alleviatory effects were more pronounced in plants treated with combined application of Si and SNP; therefore, our findings suggest that dual application of these two alleviators can be used to mitigate Cr stress.


Asunto(s)
Antioxidantes , Planta de la Mostaza , Antioxidantes/farmacología , Antioxidantes/metabolismo , Planta de la Mostaza/metabolismo , Silicio/farmacología , Silicio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cromo/toxicidad , Cromo/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo
3.
Nanomaterials (Basel) ; 13(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242021

RESUMEN

The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.

4.
J Phys Chem Lett ; 12(23): 5448-5455, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34081477

RESUMEN

Reaction centers (RCs) are the pivotal component of natural photosystems, converting solar energy into the potential difference between separated electrons and holes that is used to power much of biology. RCs from anoxygenic purple photosynthetic bacteria such as Rhodobacter sphaeroides only weakly absorb much of the visible region of the solar spectrum, which limits their overall light-harvesting capacity. For in vitro applications such as biohybrid photodevices, this deficiency can be addressed by effectively coupling RCs with synthetic light-harvesting materials. Here, we studied the time scale and efficiency of Förster resonance energy transfer (FRET) in a nanoconjugate assembled from a synthetic quantum dot (QD) antenna and a tailored RC engineered to be fluorescent. Time-correlated single-photon counting spectroscopy of biohybrid conjugates enabled the direct determination of FRET from QDs to attached RCs on a time scale of 26.6 ± 0.1 ns and with a high efficiency of 0.75 ± 0.01.


Asunto(s)
Transferencia de Energía , Transferencia Resonante de Energía de Fluorescencia/métodos , Nanoconjugados/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteobacteria/química , Puntos Cuánticos/química , Nanoconjugados/análisis , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/análisis , Puntos Cuánticos/análisis , Rhodobacter sphaeroides/química , Energía Solar
5.
Sci Rep ; 10(1): 15323, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948786

RESUMEN

Complex polyketides of bacterial origin are biosynthesised by giant assembly-line like megaenzymes of the type 1 modular polyketide synthase (PKS) class. The trans-AT family of modular PKSs, whose biosynthetic frameworks diverge significantly from those of the archetypal cis-AT type systems represent a new paradigm in natural product enzymology. One of the most distinctive enzymatic features common to trans-AT PKSs is their ability to introduce methyl groups at positions ß to the thiol ester in the growing polyketide chain. This activity is achieved through the action of a five protein HCS cassette, comprising a ketosynthase, a 3-hydroxy-3-methylglutaryl-CoA synthase, a dehydratase, a decarboxylase and a dedicated acyl carrier protein. Here we report a molecular level description, achieved using a combination of X-ray crystallography, in vitro enzyme assays and site-directed mutagenesis, of the bacillaene synthase dehydratase/decarboxylase enzyme couple PksH/PksI, responsible for the final two steps in ß-methyl branch installation in this trans-AT PKS. Our work provides detailed mechanistic insight into this biosynthetic peculiarity and establishes a molecular framework for HCS cassette enzyme exploitation and manipulation, which has future potential value in guiding efforts in the targeted synthesis of functionally optimised 'non-natural' natural products.


Asunto(s)
Carboxiliasas/metabolismo , Hidroliasas/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Polienos/metabolismo , Sintasas Poliquetidas/genética , Conformación Proteica
6.
Antibiotics (Basel) ; 9(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823674

RESUMEN

The deep ocean is the largest habitat for life on Earth, though the microorganisms that occupy this unique environmental niche remain largely unexplored. Due to the significant logistical and operational challenges associated with accessing the deep ocean, bioprospecting programmes that seek to generate novel products from marine organisms have, to date, focused predominantly on samples recovered from shallow seas. For this reason, the deep ocean remains a largely untapped resource of novel microbiological life and associated natural products. Here we report the establishment of the Bristol Sponge Microbiome Collection (BISECT), a unique repository of deep-sea microorganisms and associated metabolites isolated from the microbiota of marine sponges, recovered from previously unsurveyed regions of the mid Atlantic Ocean, at depths of 0.3-3 km. An integrated biodiscovery pipeline comprising molecular, genetic, bioinformatic and analytical tools is also described, which is being applied to interrogate this collection. The potential of this approach is illustrated using data reporting our initial efforts to identify antimicrobial natural product lead compounds. Prospects for the use of BISECT to address allied pharmaceutical needs, along with mechanisms of access to the collection are also discussed.

7.
Crit Rev Microbiol ; 39(3): 256-94, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22901022

RESUMEN

A renewed interest in the development of new antimicrobial agents is urgently needed to combat the increasing number of antibiotic-resistant strains of pathogenic microorganisms. Actinomycetes continue to be the mainstream supplier of antibiotics used in industry. The likelihood of discovering a new compound with novel chemical structure can be increased with intensive efforts in isolating and screening of rare genera of microorganisms to include in natural-product-screening collections. An unexpected variety of rare actinomycetes is now being isolated worldwide from previously uninvestigated diverse natural habitats, using different selective isolation methods. These isolation efforts include methods to enhance growth (enrichment) of rare actinomycetes, and eliminate unwanted microorganisms (pretreatment). To speed up the strain isolation process, knowledge about the distribution of such unexploited groups of microorganisms must also be augmented. This is a summary of using these microorganisms as new potential biological resources, and a review of almost all of the selective isolation methods, including pretreatment and enrichment techniques that have been developed to date for the isolation of rare actinomycetes.


Asunto(s)
Actinobacteria/clasificación , Actinobacteria/aislamiento & purificación , Microbiología del Suelo
8.
Crit Rev Biotechnol ; 32(2): 108-32, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21619453

RESUMEN

New antimicrobial agents are desperately needed to combat the increasing number of antibiotic resistant strains of pathogenic microorganisms. Natural products remain the most propitious source of novel antibiotics. It is widely accepted that actinobacteria are prolific producers of natural bioactive compounds. We argue that the likelihood of discovering a new compound having a novel chemical structure can be increased with intensive efforts in isolating and screening rare genera of microorganisms. Screening rare actinomycetes and their previously under-represented genera from unexplored environments in natural product screening collections is one way of achieving this. Rare actinomycetes are usually regarded as the actinomycete strains whose isolation frequency is much lower than that of the streptomycete strains isolated by conventional methods. Many natural environments are still either unexplored or under-explored and thus, can be considered as a prolific resource for the isolation of less exploited microorganisms. More and different ecological niches need to be studied as sources of a greater diversity of novel microorganisms. In this review, we wish to update our understanding of the potential of the rare actinomycetes by focusing on the ways and means of enhancing their bio-discovery potential.


Asunto(s)
Actinobacteria/metabolismo , Antibacterianos/biosíntesis , Actinobacteria/química , Antibacterianos/química , Descubrimiento de Drogas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA