Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Intervalo de año de publicación
1.
Commun Biol ; 7(1): 532, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710927

RESUMEN

Golgin tethers are known to mediate vesicular transport in the secretory pathway, whereas it is relatively unknown whether they may mediate cellular stress response within the cell. Here, we describe a cellular stress response during heat shock stress via SUMOylation of a Golgin tether, Golgin45. We found that Golgin45 is a SUMOylated Golgin via SUMO1 under steady state condition. Upon heat shock stress, the Golgin enters the nucleus by interacting with Importin-ß2 and gets further modified by SUMO3. Importantly, SUMOylated Golgin45 appears to interact with PML and SUMO-deficient Golgin45 mutant functions as a dominant negative for PML-NB formation during heat shock stress, suppressing transcription of lipid metabolism genes. These results indicate that Golgin45 may play a role in heat stress response by transcriptional regulation of lipid metabolism genes in SUMOylation-dependent fashion.


Asunto(s)
Respuesta al Choque Térmico , Metabolismo de los Lípidos , Sumoilación , Ubiquitinas , Humanos , Metabolismo de los Lípidos/genética , Respuesta al Choque Térmico/genética , Regulación de la Expresión Génica , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Células HeLa , Proteína SUMO-1/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Células HEK293 , Transcripción Genética , beta Carioferinas/metabolismo , beta Carioferinas/genética
2.
Cureus ; 16(3): e56071, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38618331

RESUMEN

Objective In light of several advancements and considerations in endodontic dentistry, there still remains a need to comprehensively evaluate the outcome disparities between repairing and replacing broken dental restorations. This study aims to compare the effectiveness of repairing dental restorations versus replacing them, focusing on how each method affects the structural strength and longevity of the restorations. Methods The study included 60 freshly removed human maxillary premolars. Initial processing involved rigorous washing, descaling, and polishing of the teeth. To ensure preservation, the specimens were stored in sterile, distilled water. To occlude the root canals, a self-hardening composite resin was used, and the roots were coated with two coats of clear nail polish to prevent moisture penetration. A 245 carbide bur attached to a high-speed dental handpiece with air and water spray cooling produced standardized Class II cavities on the occluso-proximal surfaces. Each cavity had a buccolingual breadth of 2 mm, an occluso-cervical length of 4 mm, and a gingival boundary that was 1 mm coronal to the cement-enamel junction. Following this preparation, the teeth were randomly separated into three groups (Group A, Group B, and Group C), each containing 20 teeth. Results Our analysis showed that teeth with entirely replaced restorations had a higher average fracture resistance than those with repaired restorations. However, the difference in fracture resistance between the repair and replacement groups for each type of material was not statistically significant. Conclusion Based on the findings, repairing a dental restoration can be a conservative and less invasive alternative to a full replacement without a significant compromise in the restoration's ability to withstand fracture. Therefore, dental professionals might consider full restoration as a viable option, taking into account the need to preserve dental tissue as well as the restoration's durability and structural integrity.

3.
J Clin Pharmacol ; 64(1): 67-79, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37691236

RESUMEN

Ritlecitinib is a small molecule in clinical development that covalently and irreversibly inhibits Janus kinase 3 (JAK3) and the TEC family of kinases (BTK, BMX, ITK, TXK, and TEC). This phase 1, open-label, parallel-group study assessed target occupancy and functional effects of ritlecitinib on JAK3 and TEC family kinases in healthy participants aged 18-60 years who received 50 or 200 mg single doses of ritlecitinib on day 1. Blood samples to assess ritlecitinib pharmacokinetics, target occupancy, and pharmacodynamics were collected over 48 hours. Target occupancy was assessed using mass spectroscopy. Functional inhibition of JAK3-dependent signaling was measured by the inhibition of the phosphorylation of its downstream target signal transducer and activator of transcription 5 (pSTAT5), following activation by interleukin 15 (IL-15). The functional inhibition of Bruton's tyrosine kinase (BTK)-dependent signaling was measured by the reduction in the upregulation of cluster of differentiation 69 (CD69), an early marker of B-cell activation, following treatment with anti-immunoglobulin D. Eight participants received one 50 mg ritlecitinib dose and 8 participants received one 200 mg dose. Ritlecitinib plasma exposure increased in an approximately dose-proportional manner from 50 to 200 mg. The maximal median JAK3 target occupancy was 72% for 50 mg and 64% for 200 mg. Ritlecitinib 50 mg had >94% maximal target occupancy of all TEC kinases, except BMX (87%), and 200 mg had >97% for all TEC kinases. For BTK and TEC, ritlecitinib maintained high target occupancy throughout a period of 48 hours. Ritlecitinib reduced pSTAT5 levels following IL-15- and BTK-dependent signaling in a dose-dependent manner. These target occupancy and functional assays demonstrate the dual inhibition of the JAK3- and BTK-dependent pathways by ritlecitinib. Further studies are needed to understand the contribution to clinical effects of inhibiting these pathways.


Asunto(s)
Interleucina-15 , Janus Quinasa 3 , Humanos , Agammaglobulinemia Tirosina Quinasa , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Factores Inmunológicos
4.
Artículo en Inglés | MEDLINE | ID: mdl-37936032

RESUMEN

Plastic has been known as an artificial polymer whereas environmental microplastics become a global concern. Microplastics are reported to cause immunotoxicity in humans through gut deposition and entering the bloodstream. This study is a comprehensive indication of the recent research on microplastic toxicity in the gastrointestinal system. We performed bibliographic analysis using VOS viewer software and analyzed the data received on microplastics and their impact on gut health which has grown exponentially since 2016. Recent findings also support microplastic toxicity in combination with heavy metals. The smaller particle size and other factors enhanced the adsorption ability of environmental contamination such as heavy metals on microplastic which increased their bioaccumulation. Such toxic complexes of heavy metals and microplastics are a concern to natural ecosystems and environmental biologists. Few reports also demonstrated the biofilm formation on microplastic surfaces which might cause greater environmental as well as human health risks. Notably, terms of determining the microplastics in human tissues through several analytical techniques are still limited to some extent. Future research should be focused on the quantification of microplastics in human tissues, the combined effect of microplastics with other contaminants, and their effects on pre-existing diseases. This study boosts understanding of the potential impacts of microplastic and nanoplastic toxicity in the human gastrointestinal system.

5.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511274

RESUMEN

Cerebral hypoperfusion is associated with enhanced cognitive decline and increased risk of neuropsychiatric disorders. Erythropoietin (EPO) is a neurotrophic factor known to improve cognitive function in preclinical and clinical studies of neurodegenerative and psychiatric disorders. However, the clinical application of EPO is limited due to its erythropoietic activity that can adversely elevate hematocrit in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered non-erythropoietic derivative of EPO, does not alter hematocrit and maintains neurotrophic and behavioral effects comparable to EPO. Our study aimed to investigate the role of CEPO in cerebral hemodynamics. Magnetic resonance imaging (MRI) analysis indicated increased blood perfusion in the hippocampal and striatal region without altering tight junction integrity. In vitro and in vivo analyses indicated that hippocampal neurotransmission was unaltered and increased cerebral perfusion was likely due to EDRF, CGRP, and NOS-mediated vasodilation. In vitro analysis using human umbilical vein endothelial cells (HUVEC) and hippocampal vascular gene expression analysis showed CEPO to be a non-angiogenic agent which regulates the MEOX2 gene expression. The results from our study demonstrate a novel role of CEPO in modulating cerebral vasodilation and blood perfusion.


Asunto(s)
Células Endoteliales , Eritropoyetina , Humanos , Eritropoyetina/genética , Eritropoyetina/farmacología , Epoetina alfa , Regulación de la Expresión Génica , Perfusión
6.
Cells ; 12(8)2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37190068

RESUMEN

Stem cells' self-renewal and multi-lineage differentiation are regulated by a complex network consisting of signaling factors, chromatin regulators, transcription factors, and non-coding RNAs (ncRNAs). Diverse role of ncRNAs in stem cell development and maintenance of bone homeostasis have been discovered recently. The ncRNAs, such as long non-coding RNAs, micro RNAs, circular RNAs, small interfering RNA, Piwi-interacting RNAs, etc., are not translated into proteins but act as essential epigenetic regulators in stem cells' self-renewal and differentiation. Different signaling pathways are monitored efficiently by the differential expression of ncRNAs, which function as regulatory elements in determining the fate of stem cells. In addition, several species of ncRNAs could serve as potential molecular biomarkers in early diagnosis of bone diseases, including osteoporosis, osteoarthritis, and bone cancers, ultimately leading to the development of new therapeutic strategies. This review aims to explore the specific roles of ncRNAs and their effective molecular mechanisms in the growth and development of stem cells, and in the regulation of osteoblast and osteoclast activities. Furthermore, we focus on and explore the association of altered ncRNA expression with stem cells and bone turnover.


Asunto(s)
Enfermedades Óseas , MicroARNs , ARN Largo no Codificante , Humanos , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , Enfermedades Óseas/genética , Enfermedades Óseas/terapia
8.
Oxid Med Cell Longev ; 2022: 3012778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092161

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronavirus (HCoV) that has created a pandemic situation worldwide as COVID-19. This virus can invade human cells via angiotensin-converting enzyme 2 (ACE2) receptor-based mechanisms, affecting the human respiratory tract. However, several reports of neurological symptoms suggest a neuroinvasive development of coronavirus. SARS-CoV-2 can damage the brain via several routes, along with direct neural cell infection with the coronavirus. The chronic inflammatory reactions surge the brain with proinflammatory elements, damaging the neural cells, causing brain ischemia associated with other health issues. SARS-CoV-2 exhibited neuropsychiatric and neurological manifestations, including cognitive impairment, depression, dizziness, delirium, and disturbed sleep. These symptoms show nervous tissue damage that enhances the occurrence of neurodegenerative disorders and aids dementia. SARS-CoV-2 has been seen in brain necropsy and isolated from the cerebrospinal fluid of COVID-19 patients. The associated inflammatory reaction in some COVID-19 patients has increased proinflammatory cytokines, which have been investigated as a prognostic factor. Therefore, the immunogenic changes observed in Parkinson's and Alzheimer's patients include their pathogenetic role. Inflammatory events have been an important pathophysiological feature of neurodegenerative diseases (NDs) such as Parkinson's and Alzheimer's. The neuroinflammation observed in AD has exacerbated the Aß burden and tau hyperphosphorylation. The resident microglia and other immune cells are responsible for the enhanced burden of Aß and subsequently mediate tau phosphorylation and ultimately disease progression. Similarly, neuroinflammation also plays a key role in the progression of PD. Several studies have demonstrated an interplay between neuroinflammation and pathogenic mechanisms of PD. The dynamic proinflammation stage guides the accumulation of α-synuclein and neurodegenerative progression. Besides, few viruses may have a role as stimulators and generate a cross-autoimmune response for α-synuclein. Hence, neurological complications in patients suffering from COVID-19 cannot be ruled out. In this review article, our primary focus is on discussing the neuroinvasive effect of the SARS-CoV-2 virus, its impact on the blood-brain barrier, and ultimately its impact on the people affected with neurodegenerative disorders such as Parkinson's and Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Enfermedad de Parkinson , Enfermedad de Alzheimer/complicaciones , COVID-19/complicaciones , Humanos , Enfermedad de Parkinson/complicaciones , Peptidil-Dipeptidasa A , SARS-CoV-2 , alfa-Sinucleína
9.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35993342

RESUMEN

In developing tissues, knowing the localization and interactors of proteins of interest is key to understanding their function. Here, we describe the Breasi-CRISPR approach (Brain Easi-CRISPR), combining Easi-CRISPR with in utero electroporation to tag endogenous proteins within embryonic mouse brains. Breasi-CRISPR enables knock-in of both short and long epitope tag sequences with high efficiency. We visualized epitope-tagged proteins with varied expression levels, such as ACTB, LMNB1, EMD, FMRP, NOTCH1 and RPL22. Detection was possible by immunohistochemistry as soon as 1 day after electroporation and we observed efficient gene editing in up to 50% of electroporated cells. Moreover, tagged proteins could be detected by immunoblotting in lysates from individual cortices. Next, we demonstrated that Breasi-CRISPR enables the tagging of proteins with fluorophores, allowing visualization of endogenous proteins by live imaging in organotypic brain slices. Finally, we used Breasi-CRISPR to perform co-immunoprecipitation mass-spectrometry analyses of the autism-related protein FMRP to discover its interactome in the embryonic cortex. Together, these data demonstrate that Breasi-CRISPR is a powerful tool with diverse applications that will propel the understanding of protein function in neurodevelopment.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Electroporación/métodos , Epítopos , Edición Génica/métodos , Ratones
10.
Front Neurosci ; 15: 777347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970114

RESUMEN

Autophagy is an important cellular self-digestion and recycling pathway that helps in maintaining cellular homeostasis. Dysregulation at various steps of the autophagic and endolysosomal pathway has been reported in several neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington disease (HD) and is cited as a critically important feature for central nervous system (CNS) proteostasis. Recently, another molecular target, namely transcription factor EB (TFEB) has been explored globally to treat neurodegenerative disorders. This TFEB, is a key regulator of autophagy and lysosomal biogenesis pathway. Multiple research studies suggested therapeutic potential by targeting TFEB to treat human diseases involving autophagy-lysosomal dysfunction, especially neurodegenerative disorders. A common observation involving all neurodegenerative disorders is their poor efficacy in clearing and recycle toxic aggregated proteins and damaged cellular organelles due to impairment in the autophagy pathway. This dysfunction in autophagy characterized by the accumulation of toxic protein aggregates leads to a progressive loss in structural integrity/functionality of neurons and may even result in neuronal death. In recent years TFEB, a key regulator of autophagy and lysosomal biogenesis, has received considerable attention. It has emerged as a potential therapeutic target in numerous neurodegenerative disorders like AD and PD. In various neurobiology studies involving animal models, TFEB has been found to ameliorate neurotoxicity and rescue neurodegeneration. Since TFEB is a master transcriptional regulator of autophagy and lysosomal biogenesis pathway and plays a crucial role in defining autophagy activation. Studies have been done to understand the mechanisms for TFEB dysfunction, which may yield insights into how TFEB might be targeted and used for the therapeutic strategy to develop a treatment process with extensive application to neurodegenerative disorders. In this review, we explore the role of different transcription factor-based targeted therapy by some natural compounds for AD and PD with special emphasis on TFEB.

11.
Commun Biol ; 4(1): 1370, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876695

RESUMEN

Altered glycosylation plays an important role during development and is also a hallmark of increased tumorigenicity and metastatic potentials of several cancers. We report here that Tankyrase-1 (TNKS1) controls protein glycosylation by Poly-ADP-ribosylation (PARylation) of a Golgi structural protein, Golgin45, at the Golgi. TNKS1 is a Golgi-localized peripheral membrane protein that plays various roles throughout the cell, ranging from telomere maintenance to Glut4 trafficking. Our study indicates that TNKS1 localization to the Golgi apparatus is mediated by Golgin45. TNKS1-dependent control of Golgin45 protein stability influences protein glycosylation, as shown by Glycomic analysis. Further, FRAP experiments indicated that Golgin45 protein level modulates Golgi glycosyltransferease trafficking in Rab2-GTP-dependent manner. Taken together, these results suggest that TNKS1-dependent regulation of Golgin45 may provide a molecular underpinning for altered glycosylation at the Golgi during development or oncogenic transformation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Glicosiltransferasas/farmacocinética , Transducción de Señal , Tanquirasas/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Transporte de Proteínas , Tanquirasas/metabolismo
12.
Life (Basel) ; 11(4)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921564

RESUMEN

In recent years, erythropoietin (EPO) has emerged as a useful neuroprotective and neurotrophic molecule that produces antidepressant and cognitive-enhancing effects in psychiatric disorders. However, EPO robustly induces erythropoiesis and elevates red blood cell counts. Chronic administration is therefore likely to increase blood viscosity and produce adverse effects in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered modification of EPO, is non-erythropoietic but retains the neurotrophic and neurotrophic activity of EPO. Blood profile analysis after EPO and CEPO administration showed that CEPO has no effect on red blood cell or platelet counts. We conducted an unbiased, quantitative, mass spectrometry-based proteomics study to comparatively investigate EPO and CEPO-induced protein profiles in neuronal phenotype PC12 cells. Bioinformatics enrichment analysis of the protein expression profiles revealed the upregulation of protein functions related to memory formation such as synaptic plasticity, long term potentiation (LTP), neurotransmitter transport, synaptic vesicle priming, and dendritic spine development. The regulated proteins, with roles in LTP and synaptic plasticity, include calcium/calmodulin-dependent protein kinase type 1 (Camk1), Synaptosomal-Associated Protein, 25 kDa (SNAP-25), Sectretogranin-1 (Chgb), Cortactin (Cttn), Elongation initiation factor 3a (Eif3a) and 60S acidic ribosomal protein P2 (Rplp2). We examined the expression of a subset of regulated proteins, Cortactin, Grb2 and Pleiotrophin, by immunofluorescence analysis in the rat brain. Grb2 was increased in the dentate gyrus by EPO and CEPO. Cortactin was induced by CEPO in the molecular layer, and pleiotrophin was increased in the vasculature by EPO. The results of our study shed light on potential mechanisms whereby EPO and CEPO produce cognitive-enhancing effects in clinical and preclinical studies.

13.
Cells ; 10(1)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375033

RESUMEN

Radial neuron migration in the developing cerebral cortex is a complex journey, starting in the germinal zones and ending in the cortical plate. In mice, migratory distances can reach several hundreds of microns, or millimeters in humans. Along the migratory path, radially migrating neurons slither through cellularly dense and complex territories before they reach their final destination in the cortical plate. This task is facilitated by radial glia, the neural stem cells of the developing cortex. Indeed, radial glia have a unique bipolar morphology, enabling them to serve as guides for neuronal migration. The key guiding structure of radial glia is the basal process, which traverses the entire thickness of the developing cortex. Neurons recognize the basal process as their guide and maintain physical interactions with this structure until the end of migration. Thus, the radial glia basal process plays a key role during radial migration. In this review, we highlight the pathways enabling neuron-basal process interactions during migration, as well as the known mechanisms regulating the morphology of the radial glia basal process. Throughout, we describe how dysregulation of these interactions and of basal process morphology can have profound effects on cortical development, and therefore lead to neurodevelopmental diseases.


Asunto(s)
Corteza Cerebral , Células-Madre Neurales/citología , Neurogénesis , Neuroglía/citología , Neuronas/citología , Animales , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Humanos
14.
Future Med Chem ; 12(2): 147-159, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32031024

RESUMEN

Aim: We applied genetic programming approaches to understand the impact of descriptors on inhibitory effects of serine protease inhibitors of Mycobacterium tuberculosis (Mtb) and the discovery of new inhibitors as drug candidates. Materials & methods: The experimental dataset of serine protease inhibitors of Mtb descriptors was optimized by genetic algorithm (GA) along with the correlation-based feature selection (CFS) in order to develop predictive models using machine-learning algorithms. The best model was deployed on a library of 918 phytochemical compounds to screen potential serine protease inhibitors of Mtb. Quality and performance of the predictive models were evaluated using various standard statistical parameters. Result: The best random forest model with CFS-GA screened 126 anti-tubercular agents out of 918 phytochemical compounds. Also, genetic programing symbolic classification method is optimized descriptors and developed an equation for mathematical models. Conclusion: The use of CFS-GA with random forest-enhanced classification accuracy and predicted new serine protease inhibitors of Mtb, which can be used for better drug development against tuberculosis.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Aprendizaje Automático , Modelos Moleculares , Serina Proteasas/genética , Inhibidores de Serina Proteinasa/química
15.
Sci Rep ; 10(1): 3523, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103111

RESUMEN

Visceral leishmaniasis is characterized by mixed production of Th1/2 cytokines and the disease is established by an enhanced level of Th2 cytokine. CD4+ T cells are main cell type which produces Th1/2 cytokine in the host upon Leishmania infection. However, the regulatory mechanism for Th1/2 production is not well understood. In this study, we co-cultured mice CD4+ T cells with Leishmania donovani infected and uninfected macrophage for the identification of dysregulated miRNAs in CD4+ T cells by next-generation sequencing. Here, we identified 604 and 613 known miRNAs in CD4+ T cells in control and infected samples respectively and a total of only 503 miRNAs were common in both groups. The expression analysis revealed that 112 miRNAs were up and 96 were down-regulated in infected groups, compared to uninfected control. Nineteen up-regulated and 17 down-regulated miRNAs were statistically significant (p < 0.05), which were validated by qPCR. Further, using insilco approach, we identified the gene targets of significant miRNAs on the basis of CD4+ T cell biology. Eleven up-regulated miRNAs and 9 down-regulated miRNAs were associated with the cellular immune responses and Th1/2 dichotomy upon Leishmania donovani infection. The up-regulated miRNAs targeted transcription factors that promote differentiation of CD4+ T cells towards Th1 phenotype. While down-regulated miRNAs targeted the transcription factors that facilitate differentiation of CD4+ T cells towards Th2 populations. The GO and pathway enrichment analysis also showed that the identified miRNAs target the pathway and genes related to CD4+ T cell biology which plays important role in Leishmania donovani infection.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , MicroARNs/inmunología , Células TH1/inmunología , Células Th2/inmunología , Animales , Femenino , Ratones , Ratones Endogámicos BALB C
16.
Sci Rep ; 9(1): 12465, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462665

RESUMEN

The unique stacked morphology of the Golgi apparatus had been a topic of intense investigation among the cell biologists over the years. We had previously shown that the two Golgin tethers (GM130 and Golgin45) could, to a large degree, functionally substitute for GRASP-type Golgi stacking proteins to sustain normal Golgi morphology and function in GRASP65/55-double depleted HeLa cells. However, compared to well-studied GM130, the exact role of Golgin45 in Golgi structure remains poorly understood. In this study, we aimed to further characterize the functional role of Golgin45 in Golgi structure and identified Golgin45 as a novel Syntaxin5-binding protein. Based primarily on a sequence homology between Golgin45 and GM130, we found that a leucine zipper-like motif in the central coiled-coil region of Golgin45 appears to serve as a Syntaxin5 binding domain. Mutagenesis study of this conserved domain in Golgin45 showed that a point mutation (D171A) can abrogate the interaction between Golgin45 and Syntaxin5 in pull-down assays using recombinant proteins, whereas this mutant Golgin45 binding to Rab2-GTP was unaffected in vitro. Strikingly, exogenous expression of this Syntaxin5 binding deficient mutant (D171A) of Golgin45 in HeLa cells resulted in frequent intercisternal fusion among neighboring Golgi cisterna, as readily observed by EM and EM tomography. Further, double depletion of the two Syntaxin5-binding Golgin tethers also led to significant intercisternal fusion, while double depletion of GRASP65/55 didn't lead to this phenotype. These results suggest that certain tether-SNARE interaction within Golgi stack may play a role in inhibiting intercisternal fusion among neighboring cisternae, thereby contributing to structural integrity of the Golgi stack.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Proteínas Qa-SNARE/metabolismo , Sustitución de Aminoácidos , Aparato de Golgi/genética , Aparato de Golgi/ultraestructura , Proteínas de la Matriz de Golgi/genética , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Mutación Missense , Dominios Proteicos , Proteínas Qa-SNARE/genética
17.
Neuromolecular Med ; 21(1): 42-53, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30644041

RESUMEN

Parkinson's disease (PD), a neurodegenerative central nervous system disorder, is characterised by progressive loss of nigrostriatal neurons in basal ganglia. Previous studies regarding PD have suggested the role of oxidative stress along with neuroinflammation in neurodegeneration. Accordingly, our study explore the anti-inflammatory activity of Tinospora cordifolia aqueous extract (TCAE) in 1-methyl-4-phenyl-1,2,3,6-tetra hydropyridine (MPTP)-intoxicated Parkinsonian mouse model. MPTP-intoxicated mice showed significant behavioral and biochemical abnormalities which were effectively reversed by TCAE. It is evident that TCAE inhibits the MPTP-intoxicated Nuclear factor-κB (NF-κB) activation and its associated pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) from immunohistochemistry and Western blot analysis. In MPTP-intoxicated mice, microglial and astroglial-specific inflammatory markers, ionized calcium binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP), respectively were increased while were significantly reduced in TCAE treatment. Expression of pro-inflammatory cytokine genes, TNF-α, Interleukin-12 (IL-12) and Interleukin-1ß (IL-1ß) were found to be upregulated in MPTP-intoxicated mice, whereas TCAE treatment restored their levels. Additionally, anti-inflammatory factor Interleukin-10 (IL-10) gene was found to be downregulated in MPTP-intoxicated mice which were significantly restored by TCAE treatment. Tyrosine hydroxylase (TH) expression was reduced in MPTP-intoxicated mice, while its expression was significantly increased in TCAE-treated group. Our result strongly suggests that T. cordifolia protects dopaminergic neurons by suppressing neuroinflammation in MPTP-induced Parkinsonian mouse model.


Asunto(s)
Antiinflamatorios/uso terapéutico , Intoxicación por MPTP/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/tratamiento farmacológico , Fitoterapia , Tinospora/química , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Citocinas/biosíntesis , Citocinas/genética , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Medicina Ayurvédica , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Tallos de la Planta/química , Prueba de Desempeño de Rotación con Aceleración Constante , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-30017780

RESUMEN

Erythropoietin (EPO), a cytokine molecule, is best-known for its role in erythropoiesis. Preclinical studies have demonstrated that EPO has robust neuroprotective effects that appear to be independent of erythropoiesis. It is also being clinically tested for the treatment of neuropsychiatric illnesses due to its behavioral actions. A major limitation of EPO is that long-term administration results in excessive red blood cell production and increased blood viscosity. A chemical modification of EPO, carbamoylated erythropoietin (CEPO), reproduces the behavioral response of EPO in animal models but does not stimulate erythropoiesis. The molecular mechanisms involved in the behavioral effects of CEPO are not known. To obtain molecular insight we examined CEPO induced gene expression in neuronal cells. PC-12 cells were treated with CEPO followed by genome-wide microarray analysis. We investigated the functional significance of the gene profile by unbiased bioinformatics analysis. The Ingenuity pathway analysis (IPA) software was employed. The results revealed activation of functions such as neuronal number and long-term potentiation. Regulated signaling cascades included categories such as neurotrophin, CREB, NGF and synaptic long-term potentiation signaling. Some of the regulated genes from these pathways are CAMKII, EGR1, FOS, GRIN1, KIF1B, NOTCH1. We also comparatively examined EPO and CEPO-induced gene expression for a subset of genes in the rat dentate gyrus. The CEPO gene profile shows the induction of genes and signaling cascades that have roles in neurogenesis and memory formation, mechanisms that can produce antidepressant and cognitive function enhancing activity.


Asunto(s)
Eritropoyetina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Animales , Diferenciación Celular , Perfilación de la Expresión Génica , Captura por Microdisección con Láser , Masculino , Análisis por Micromatrices , Factores de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/metabolismo , Células PC12 , Carbamilación de Proteína , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
19.
Front Pharmacol ; 9: 757, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30127737

RESUMEN

Oxidative stress and neuroinflammation play a key role in dopaminergic (DA) neuronal degeneration, which results in the hindrance of normal ongoing biological processes in the case of Parkinson's disease. As shown in several studies, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, different behavioral parameters have suggested motor impairment and damage of antioxidant defence. Thus, some specific biological molecules found in medicinal plants can be used to inhibit the DA neuronal degeneration through their antioxidant and anti-inflammatory activities. With this objective, we studied chlorogenic acid (CGA), a naturally occurring polyphenolic compound, for its antioxidant and anti-inflammatory properties in MPTP-intoxicated mice. We observed significant reoccurrence of motor coordination and antioxidant defence on CGA supplementation, which has been in contrast with MPTP-injected mice. Moreover, in the case of CGA-treated mice, the enhanced expression of tyrosine hydroxylase (TH) within the nigrostriatal region has supported its beneficial effect. The activation of glial cells and oxidative stress levels were also estimated using inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) immunoreactivity within substantia nigra (SN) and striatum of MPTP-injected mice. Administration of CGA has prevented the neuroinflammation in SN by regulating the nuclear factor-κB expression in the MPTP-induced group. The significant release of certain pro-inflammatory mediators such as tumor necrosis factor-α and interleukin (IL)-1ß has also been inhibited by CGA with the enhanced expression of anti-inflammatory cytokine IL-10. Moreover, reduced GFAP staining within the nigrostriatal region has supported the fact that CGA has significantly helped in the attenuation of astrocyte activation. Hence, our study has shown that CGA supplementation shows its therapeutic ability by reducing the oxidative stress and neuroinflammation in MPTP-intoxicated mice.

20.
Sci Signal ; 11(537)2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970602

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family proteins mediate membrane fusion critical for vesicular transport and cellular secretion. Mast cells rely on SNARE-mediated membrane fusion for degranulation stimulated by crosslinking of immunoglobulin E (IgE) bound to the Fcε receptor (FcεRI). We investigated the mechanisms downstream of receptor activation that control degranulation. We found that the SNARE binding protein tomosyn-1 (also known as STXBP5) inhibited FcεRI-stimulated degranulation of mast cells. After mast cell activation, tomosyn-1 was phosphorylated on serine and threonine residues, dissociated from the SNARE protein syntaxin 4 (STX4), and associated with STX3. We identified PKCδ as the major kinase required for tomosyn-1 threonine phosphorylation and for regulation of the interaction with STXs. Incubation with high IgE concentrations increased tomosyn-1 abundance in cultured mast cells. Similarly, in basophils from allergic patients with high amounts of serum IgE, the abundance of tomosyn-1 was increased as compared to that in patients with normal IgE concentrations. Our findings identified tomosyn-1 as an inhibitor of mast cell degranulation that required PKCδ to switch its interaction with STX partners during fusion. We suggest that the IgE-mediated increase in tomosyn-1 abundance in allergic patients may represent a counterregulatory mechanism to limit disease development.


Asunto(s)
Degranulación de la Célula , Exocitosis , Mastocitos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteínas R-SNARE/metabolismo , Animales , Células Cultivadas , Humanos , Inmunoglobulina E/metabolismo , Mastocitos/citología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Fosforilación , Proteína Quinasa C-delta/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Ratas , Receptores de IgE/metabolismo , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA