Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
ArXiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38947926

RESUMEN

Neighborhood disadvantage is associated with worse health and cognitive outcomes. Morphological similarity network (MSN) is a promising approach to elucidate cortical network patterns underlying complex cognitive functions. We hypothesized that MSNs could capture changes in cortical patterns related to neighborhood disadvantage and cognitive function. This cross-sectional study included cognitively unimpaired participants from two large Alzheimers studies at University of Wisconsin-Madison. Neighborhood disadvantage status was obtained using the Area Deprivation Index (ADI). Cognitive performance was assessed on memory, processing speed and executive function. Morphological Similarity Networks (MSN) were constructed for each participant based on the similarity in distribution of cortical thickness of brain regions, followed by computation of local and global network features. Association of ADI with cognitive scores and MSN features were examined using linear regression and mediation analysis. ADI showed negative association with category fluency,implicit learning speed, story recall and modified pre-clinical Alzheimers cognitive composite scores, indicating worse cognitive function among those living in more disadvantaged neighborhoods. Local network features of frontal and temporal regions differed based on ADI status. Centrality of left lateral orbitofrontal region showed a partial mediating effect between association of neighborhood disadvantage and story recall performance. Our preliminary findings suggest differences in local cortical organization by neighborhood disadvantage, which partially mediated the relationship between ADI and cognitive performance, providing a possible network-based mechanism to, in-part, explain the risk for poor cognitive functioning associated with disadvantaged neighborhoods.

2.
Cancers (Basel) ; 16(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927953

RESUMEN

Medulloblastoma (MB) is the most frequent malignant brain tumor in children with extensive heterogeneity that results in varied clinical outcomes. Recently, MB was categorized into four molecular subgroups, WNT, SHH, Group 3, and Group 4. While SHH and Group 4 are known for their intermediate prognosis, studies have reported wide disparities in patient outcomes within these subgroups. This study aims to create a radiomic prognostic signature, medulloblastoma radiomics risk (mRRisk), to identify the risk levels within the SHH and Group 4 subgroups, individually, for reliable risk stratification. Our hypothesis is that this signature can comprehensively capture tumor characteristics that enable the accurate identification of the risk level. In total, 70 MB studies (48 Group 4, and 22 SHH) were retrospectively curated from three institutions. For each subgroup, 232 hand-crafted features that capture the entropy, surface changes, and contour characteristics of the tumor were extracted. Features were concatenated and fed into regression models for risk stratification. Contrasted with Chang stratification that did not yield any significant differences within subgroups, significant differences were observed between two risk groups in Group 4 (p = 0.04, Concordance Index (CI) = 0.82) on the cystic core and non-enhancing tumor, and SHH (p = 0.03, CI = 0.74) on the enhancing tumor. Our results indicate that radiomics may serve as a prognostic tool for refining MB risk stratification, towards improved patient care.

3.
J Neurooncol ; 168(2): 307-316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38689115

RESUMEN

OBJECTIVE: Radiation necrosis (RN) can be difficult to radiographically discern from tumor progression after stereotactic radiosurgery (SRS). The objective of this study was to investigate the utility of radiomics and machine learning (ML) to differentiate RN from recurrence in patients with brain metastases treated with SRS. METHODS: Patients with brain metastases treated with SRS who developed either RN or tumor reccurence were retrospectively identified. Image preprocessing and radiomic feature extraction were performed using ANTsPy and PyRadiomics, yielding 105 features from MRI T1-weighted post-contrast (T1c), T2, and fluid-attenuated inversion recovery (FLAIR) images. Univariate analysis assessed significance of individual features. Multivariable analysis employed various classifiers on features identified as most discriminative through feature selection. ML models were evaluated through cross-validation, selecting the best model based on area under the receiver operating characteristic (ROC) curve (AUC). Specificity, sensitivity, and F1 score were computed. RESULTS: Sixty-six lesions from 55 patients were identified. On univariate analysis, 27 features from the T1c sequence were statistically significant, while no features were significant from the T2 or FLAIR sequences. For clinical variables, only immunotherapy use after SRS was significant. Multivariable analysis of features from the T1c sequence yielded an AUC of 76.2% (standard deviation [SD] ± 12.7%), with specificity and sensitivity of 75.5% (± 13.4%) and 62.3% (± 19.6%) in differentiating radionecrosis from recurrence. CONCLUSIONS: Radiomics with ML may assist the diagnostic ability of distinguishing RN from tumor recurrence after SRS. Further work is needed to validate this in a larger multi-institutional cohort and prospectively evaluate it's utility in patient care.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Automático , Imagen por Resonancia Magnética , Necrosis , Recurrencia Local de Neoplasia , Traumatismos por Radiación , Humanos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagen , Femenino , Masculino , Traumatismos por Radiación/diagnóstico por imagen , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología , Persona de Mediana Edad , Necrosis/diagnóstico por imagen , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/patología , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Anciano , Radiocirugia , Adulto , Diagnóstico Diferencial , Anciano de 80 o más Años , Radiómica
4.
Clin Cancer Res ; 30(1): 106-115, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37910594

RESUMEN

PURPOSE: Isocitrate dehydrogenase-mutant (IDH-mt) gliomas are incurable primary brain tumors characterized by a slow-growing phase over several years followed by a rapid-growing malignant phase. We hypothesized that tumor volume growth rate (TVGR) on MRI may act as an earlier measure of clinical benefit during the active surveillance period. EXPERIMENTAL DESIGN: We integrated three-dimensional volumetric measurements with clinical, radiologic, and molecular data in a retrospective cohort of IDH-mt gliomas that were observed after surgical resection in order to understand tumor growth kinetics and the impact of molecular genetics. RESULTS: Using log-linear mixed modeling, the entire cohort (n = 128) had a continuous %TVGR per 6 months of 10.46% [95% confidence interval (CI), 9.11%-11.83%] and a doubling time of 3.5 years (95% CI, 3.10-3.98). High molecular grade IDH-mt gliomas, defined by the presence of homozygous deletion of CDKN2A/B, had %TVGR per 6 months of 19.17% (95% CI, 15.57%-22.89%) which was significantly different from low molecular grade IDH-mt gliomas with a growth rate per 6 months of 9.54% (95% CI, 7.32%-11.80%; P < 0.0001). Using joint modeling to comodel the longitudinal course of TVGR and overall survival, we found each one natural logarithm tumor volume increase resulted in more than a 3-fold increase in risk of death (HR = 3.83; 95% CI, 2.32-6.30; P < 0.0001). CONCLUSIONS: TVGR may be used as an earlier measure of clinical benefit and correlates well with the WHO 2021 molecular classification of gliomas and survival. Incorporation of TVGR as a surrogate endpoint into future prospective studies of IDH-mt gliomas may accelerate drug development.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Estudios Retrospectivos , Estudios Prospectivos , Carga Tumoral , Homocigoto , Espera Vigilante , Eliminación de Secuencia , Mutación , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/metabolismo , Isocitrato Deshidrogenasa/genética
5.
Diagnostics (Basel) ; 13(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685265

RESUMEN

Recent advances in artificial intelligence have greatly impacted the field of medical imaging and vastly improved the development of computational algorithms for data analysis. In the field of pediatric neuro-oncology, radiomics, the process of obtaining high-dimensional data from radiographic images, has been recently utilized in applications including survival prognostication, molecular classification, and tumor type classification. Similarly, radiogenomics, or the integration of radiomic and genomic data, has allowed for building comprehensive computational models to better understand disease etiology. While there exist excellent review articles on radiomics and radiogenomic pipelines and their applications in adult solid tumors, in this review article, we specifically review these computational approaches in the context of pediatric medulloblastoma tumors. Based on our systematic literature research via PubMed and Google Scholar, we provide a detailed summary of a total of 15 articles that have utilized radiomic and radiogenomic analysis for survival prognostication, tumor segmentation, and molecular subgroup classification in the context of pediatric medulloblastoma. Lastly, we shed light on the current challenges with the existing approaches as well as future directions and opportunities with using these computational radiomic and radiogenomic approaches for pediatric medulloblastoma tumors.

6.
J Anaesthesiol Clin Pharmacol ; 39(2): 292-301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37564858

RESUMEN

Background and Aims: Acute kidney injury (AKI) is a frequent complication of severe trauma associated with high mortality. The aim of this study was to evaluate the diagnostic ability of plasma and urine neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of AKI assessed by RIFLE criteria as reference in trauma patients in intensive care unit (ICU). Material and Methods: This was a prospective observational study. Four hundred and eighteen patients admitted in the trauma ICU with age ≥18 years without known renal diseases were followed-up (serum creatinine, urine output, and estimated glomerular filtration rate) for 5 consecutive days. As per RIFLE criteria, 70 patients were broadly classified as AKI and rest of the patients (n = 348) as non-AKI. Plasma and urine samples of AKI (n = 70) and non-AKI (n = 70) patients were further assessed for 3 consecutive days following admission. Results: Mean plasma NGAL (pNGAL) was significantly elevated in AKI patients as compared with non-AKI patients; on admission: 204.08 versus 93.74 ng/mL (P = 0.01); at 24 h: 216.73 versus 94.63 ng/mL (P = 0.01); and 48 h: 212.77 versus 86.32 ng/mL (P = 0.01). Mean urine NGAL (uNGAL) at 48 h was also significantly elevated: 15.45 ng/mL in AKI patients as compared with 13.48 ng/mL in non-AKI patients (P = 0.01). Plasma and urine NGAL levels were significantly associated with increased mortality. Conclusion: pNGAL had good predictive value on admission (area under the receiver operative characteristic [AUROC] 0.84), at 24 h (AUROC 0.88) and 48 h (AUROC 0.87), while uNGAL had moderate performance at 24 h (AUROC 0.61) and 48 h (AUROC 0.71). pNGAL can be used as an early and potent diagnostic and predictive marker of AKI and mortality in critically ill trauma patients.

7.
Comput Intell Neurosci ; 2022: 1830010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774437

RESUMEN

Brain tumors are the 10th leading reason for the death which is common among the adults and children. On the basis of texture, region, and shape there exists various types of tumor, and each one has the chances of survival very low. The wrong classification can lead to the worse consequences. As a result, these had to be properly divided into the many classes or grades, which is where multiclass classification comes into play. Magnetic resonance imaging (MRI) pictures are the most acceptable manner or method for representing the human brain for identifying the various tumors. Recent developments in image classification technology have made great strides, and the most popular and better approach that has been considered best in this area is CNN, and therefore, CNN is used for the brain tumor classification issue in this paper. The proposed model was successfully able to classify the brain image into four different classes, namely, no tumor indicating the given MRI of the brain does not have the tumor, glioma, meningioma, and pituitary tumor. This model produces an accuracy of 99%.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Niño , Humanos , Imagen por Resonancia Magnética/métodos , Meningioma/diagnóstico por imagen , Meningioma/patología
8.
IEEE Trans Med Imaging ; 41(7): 1764-1777, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35108202

RESUMEN

The concept of tumor field effect implies that cancer is a systemic disease with its impact way beyond the visible tumor confines. For instance, in Glioblastoma (GBM), an aggressive brain tumor, the increase in intracranial pressure due to tumor burden often leads to brain herniation and poor outcomes. Our work is based on the rationale that highly aggressive tumors tend to grow uncontrollably, leading to pronounced biomechanical tissue deformations in the normal parenchyma, which when combined with local morphological differences in the tumor confines on MRI scans, will comprehensively capture tumor field effect. Specifically, we present an integrated MRI-based descriptor, radiomic-Deformation and Textural Heterogeneity (r-DepTH). This descriptor comprises measurements of the subtle perturbations in tissue deformations throughout the surrounding normal parenchyma due to mass effect. This involves non-rigidly aligning the patients' MRI scans to a healthy atlas via diffeomorphic registration. The resulting inverse mapping is used to obtain the deformation field magnitudes in the normal parenchyma. These measurements are then combined with a 3D texture descriptor, Co-occurrence of Local Anisotropic Gradient Orientations (COLLAGE), which captures the morphological heterogeneity and infiltration within the tumor confines, on MRI scans. In this work, we extensively evaluated r-DepTH for survival risk-stratification on a total of 207 GBM cases from 3 different cohorts (Cohort 1 ( n1 = 53 ), Cohort 2 ( n2 = 75 ), and Cohort 3 ( n3 = 79 )), where each of these three cohorts was used as a training set for our model separately, and the other two cohorts were used for testing, independently, for each training experiment. When employing Cohort 1 for training, r-DepTH yielded Concordance indices (C-indices) of 0.7 and 0.65, hazard ratios (HR) and Confidence Intervals (CI) of 10 (6 - 19) and 5 (3 - 8) on Cohorts 2 and 3, respectively. Similarly, training on Cohort 2 yielded C-indices of 0.6 and 0.7, HR and CI of 1 (0.7 - 2) and 3 (2 - 5) on Cohorts 1 and 3, respectively. Finally, training on Cohort 3 yielded C-indices of 0.75 and 0.63, HR and CI of 24 (10 - 57) and 12 (6 - 21) on Cohorts 1 and 2, respectively. Our results show that r-DepTH descriptor may serve as a comprehensive and a robust MRI-based prognostic marker of disease aggressiveness and survival in solid tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Anisotropía , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Estudios de Cohortes , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Humanos , Imagen por Resonancia Magnética/métodos , Pronóstico
9.
IEEE J Biomed Health Inform ; 26(6): 2627-2636, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35085099

RESUMEN

Localized disease heterogeneity on imaging extracted via radiomics approaches have recently been associated with disease prognosis and treatment response. Traditionally, radiomics analyses leverage texture operators to derive voxel- or region-wise feature values towards quantifying subtle variations in image appearance within a region-of-interest (ROI). With the goal of mining additional voxel-wise texture patterns from radiomic "expression maps", we introduce a new RADIomic Spatial TexturAl descripTor (RADISTAT). This was driven by the hypothesis that quantifying spatial organization of texture patterns within an ROI could allow for better capturing interactions between different tissue classes present in a given region; thus enabling more accurate characterization of disease or response phenotypes. RADISTAT involves: (a) robustly identifying sub-compartments of low, intermediate, and high radiomic expression (i.e. heterogeneity) in a feature map and (b) quantifying spatial organization of sub-compartments via graph interactions. RADISTAT was evaluated in two clinically challenging problems: (1) discriminating nodal/distant metastasis from metastasis-free rectal cancer patients on post-chemoradiation T2w MRI, and (2) distinguishing tumor progression from pseudo-progression in glioblastoma multiforme using post-chemoradiation T1w MRI. Across over 800 experiments, RADISTAT yielded a consistent discriminatory signature for tumor progression (GBM) and disease metastasis (RCa); where its sub-compartments were associated with pathologic tissue types (fibrosis or tumor, determined via fusion of MRI and pathology). In a multi-institutional setting for both clinical problems, RADISTAT resulted in higher classifier performance (11% improvement in AUC, on average) compared to radiomic descriptors. Furthermore, combining RADISTAT with radiomic descriptors resulted in significantly improved performance compared to using radiomic descriptors alone.


Asunto(s)
Glioblastoma , Humanos , Imagen por Resonancia Magnética/métodos , Pronóstico
10.
Front Oncol ; 12: 915143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620600

RESUMEN

Introduction: Medulloblastoma (MB) is a malignant, heterogenous brain tumor. Advances in molecular profiling have led to identifying four molecular subgroups of MB (WNT, SHH, Group 3, Group 4), each with distinct clinical behaviors. We hypothesize that (1) aggressive MB tumors, growing heterogeneously, induce pronounced local structural deformations in the surrounding parenchyma, and (b) these local deformations as captured on Gadolinium (Gd)-enhanced-T1w MRI are independently associated with molecular subgroups, as well as overall survival in MB patients. Methods: In this work, a total of 88 MB studies from 2 institutions were analyzed. Following tumor delineation, Gd-T1w scan for every patient was registered to a normal age-specific T1w-MRI template via deformable registration. Following patient-atlas registration, local structural deformations in the brain parenchyma were obtained for every patient by computing statistics from deformation magnitudes obtained from every 5mm annular region, 0 < d < 60 mm, where d is the distance from the tumor infiltrating edge. Results: Multi-class comparison via ANOVA yielded significant differences between deformation magnitudes obtained for Group 3, Group 4, and SHH molecular subgroups, observed up to 60-mm outside the tumor edge. Additionally, Kaplan-Meier survival analysis showed that the local deformation statistics, combined with the current clinical risk-stratification approaches (molecular subgroup information and Chang's classification), could identify significant differences between high-risk and low-risk survival groups, achieving better performance results than using any of these approaches individually. Discussion: These preliminary findings suggest there exists significant association of our tumor-induced deformation descriptor with overall survival in MB, and that there could be an added value in using the proposed radiomic descriptor along with the current risk classification approaches, towards more reliable risk assessment in pediatric MB.

11.
J Magn Reson Imaging ; 54(3): 1009-1021, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33860966

RESUMEN

BACKGROUND: Radiomic descriptors from magnetic resonance imaging (MRI) are promising for disease diagnosis and characterization but may be sensitive to differences in imaging parameters. OBJECTIVE: To evaluate the repeatability and robustness of radiomic descriptors within healthy brain tissue regions on prospectively acquired MRI scans; in a test-retest setting, under controlled systematic variations of MRI acquisition parameters, and after postprocessing. STUDY TYPE: Prospective. SUBJECTS: Fifteen healthy participants. FIELD STRENGTH/SEQUENCE: A 3.0 T, axial T2 -weighted 2D turbo spin-echo pulse sequence, 181 scans acquired (2 test/retest reference scans and 12 with systematic variations in contrast weighting, resolution, and acceleration per participant; removing scans with artifacts). ASSESSMENT: One hundred and forty-six radiomic descriptors were extracted from a contiguous 2D region of white matter in each scan, before and after postprocessing. STATISTICAL TESTS: Repeatability was assessed in a test/retest setting and between manual and automated annotations for the reference scan. Robustness was evaluated between the reference scan and each group of variant scans (contrast weighting, resolution, and acceleration). Both repeatability and robustness were quantified as the proportion of radiomic descriptors that fell into distinct ranges of the concordance correlation coefficient (CCC): excellent (CCC > 0.85), good (0.7 ≤ CCC ≤ 0.85), moderate (0.5 ≤ CCC < 0.7), and poor (CCC < 0.5); for unprocessed and postprocessed scans separately. RESULTS: Good to excellent repeatability was observed for 52% of radiomic descriptors between test/retest scans and 48% of descriptors between automated vs. manual annotations, respectively. Contrast weighting (TR/TE) changes were associated with the largest proportion of highly robust radiomic descriptors (21%, after processing). Image resolution changes resulted in the largest proportion of poorly robust radiomic descriptors (97%, before postprocessing). Postprocessing of images with only resolution/acceleration differences resulted in 73% of radiomic descriptors showing poor robustness. DATA CONCLUSIONS: Many radiomic descriptors appear to be nonrobust across variations in MR contrast weighting, resolution, and acceleration, as well in test-retest settings, depending on feature formulation and postprocessing. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Humanos , Estudios Prospectivos
13.
Neuro Oncol ; 23(2): 251-263, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33068415

RESUMEN

BACKGROUND: Recent epidemiological studies have suggested that sexual dimorphism influences treatment response and prognostic outcome in glioblastoma (GBM). To this end, we sought to (i) identify distinct sex-specific radiomic phenotypes-from tumor subcompartments (peritumoral edema, enhancing tumor, and necrotic core) using pretreatment MRI scans-that are prognostic of overall survival (OS) in GBMs, and (ii) investigate radiogenomic associations of the MRI-based phenotypes with corresponding transcriptomic data, to identify the signaling pathways that drive sex-specific tumor biology and treatment response in GBM. METHODS: In a retrospective setting, 313 GBM patients (male = 196, female = 117) were curated from multiple institutions for radiomic analysis, where 130 were used for training and independently validated on a cohort of 183 patients. For the radiogenomic analysis, 147 GBM patients (male = 94, female = 53) were used, with 125 patients in training and 22 cases for independent validation. RESULTS: Cox regression models of radiomic features from gadolinium T1-weighted MRI allowed for developing more precise prognostic models, when trained separately on male and female cohorts. Our radiogenomic analysis revealed higher expression of Laws energy features that capture spots and ripple-like patterns (representative of increased heterogeneity) from the enhancing tumor region, as well as aggressive biological processes of cell adhesion and angiogenesis to be more enriched in the "high-risk" group of poor OS in the male population. In contrast, higher expressions of Laws energy features (which detect levels and edges) from the necrotic core with significant involvement of immune related signaling pathways was observed in the "low-risk" group of the female population. CONCLUSIONS: Sexually dimorphic radiogenomic models could help risk-stratify GBM patients for personalized treatment decisions.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Pronóstico , Estudios Retrospectivos
14.
Radiol Artif Intell ; 2(6): e190168, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33330847

RESUMEN

PURPOSE: To identify radiomic features extracted from the tumor habitat on routine MR images that are prognostic for progression-free survival (PFS) and to assess their morphologic basis with corresponding histopathologic attributes in glioblastoma (GBM). MATERIALS AND METHODS: In this retrospective study, 156 pretreatment GBM MR images (gadolinium-enhanced T1-weighted, T2-weighted, and fluid-attenuated inversion recovery [FLAIR] images) were curated. Of these 156 images, 122 were used for training (90 from The Cancer Imaging Archive and 32 from the Cleveland Clinic, acquired between December 1, 2011, and May 1, 2018) and 34 were used for validation. The validation set was obtained from the Ivy Glioblastoma Atlas Project database, for which the percentage extent of 11 histologic attributes was available on corresponding histopathologic specimens of the resected tumor. Following expert annotations of the tumor habitat (necrotic core, enhancing tumor, and FLAIR-hyperintense subcompartments), 1008 radiomic descriptors (eg, Haralick texture features, Laws energy features, co-occurrence of local anisotropic gradient orientations [CoLIAGe]) were extracted from the three MRI sequences. The top radiomic features were obtained from each subcompartment in the training set on the basis of their ability to risk-stratify patients according to PFS. These features were then concatenated to create a radiomics risk score (RRS). The RRS was independently validated on a holdout set. In addition, correlations (P < .05) of RRS features were computed, with the percentage extent of the 11 histopathologic attributes, using Spearman correlation analysis. RESULTS: RRS yielded a concordance index of 0.80 on the validation set and constituted radiomic features, including Laws (capture edges, waves, ripple patterns) and CoLIAGe (capture disease heterogeneity) from enhancing tumor and FLAIR hyperintensity. These radiomic features were correlated with histopathologic attributes associated with disease aggressiveness in GBM, particularly tumor infiltration (P = .0044) and hyperplastic blood vessels (P = .0005). CONCLUSION: Preliminary findings demonstrated significant associations of prognostic radiomic features with disease-specific histologic attributes, with implications for risk-stratifying patients with GBM for personalized treatment decisions. Supplemental material is available for this article. © RSNA, 2020.

15.
Front Comput Neurosci ; 14: 563439, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381018

RESUMEN

A significant challenge in Glioblastoma (GBM) management is identifying pseudo-progression (PsP), a benign radiation-induced effect, from tumor recurrence, on routine imaging following conventional treatment. Previous studies have linked tumor lobar presence and laterality to GBM outcomes, suggesting that disease etiology and progression in GBM may be impacted by tumor location. Hence, in this feasibility study, we seek to investigate the following question: Can tumor location on treatment-naïve MRI provide early cues regarding likelihood of a patient developing pseudo-progression vs. tumor recurrence? In this study, 74 pre-treatment Glioblastoma MRI scans with PsP (33) and tumor recurrence (41) were analyzed. First, enhancing lesion on Gd-T1w MRI and peri-lesional hyperintensities on T2w/FLAIR were segmented by experts and then registered to a brain atlas. Using patients from the two phenotypes, we construct two atlases by quantifying frequency of occurrence of enhancing lesion and peri-lesion hyperintensities, by averaging voxel intensities across the population. Analysis of differential involvement was then performed to compute voxel-wise significant differences (p-value < 0.05) across the atlases. Statistically significant clusters were finally mapped to a structural atlas to provide anatomic localization of their location. Our results demonstrate that patients with tumor recurrence showed prominence of their initial tumor in the parietal lobe, while patients with PsP showed a multi-focal distribution of the initial tumor in the frontal and temporal lobes, insula, and putamen. These preliminary results suggest that lateralization of pre-treatment lesions toward certain anatomical areas of the brain may allow to provide early cues regarding assessing likelihood of occurrence of pseudo-progression from tumor recurrence on MRI scans.

16.
Med Phys ; 47(12): 6029-6038, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33176026

RESUMEN

PURPOSE: There is an increasing availability of large imaging cohorts [such as through The Cancer Imaging Archive (TCIA)] for computational model development and imaging research. To ensure development of generalizable computerized models, there is a need to quickly determine relative quality differences in these cohorts, especially when considering MRI datasets which can exhibit wide variations in image appearance. The purpose of this study is to present a quantitative quality control tool, MRQy, to help interrogate MR imaging datasets for: (a) site- or scanner-specific variations in image resolution or image contrast, and (b) imaging artifacts such as noise or inhomogeneity; which need correction prior to model development. METHODS: Unlike existing imaging quality control tools, MRQy has been generalized to work with images from any body region to efficiently extract a series of quality measures (e.g., noise ratios, variation metrics) and MR image metadata (e.g., voxel resolution and image dimensions). MRQy also offers a specialized HTML5-based front-end designed for real-time filtering and trend visualization of quality measures. RESULTS: MRQy was used to evaluate (a) n = 133 brain MRIs from TCIA (7 sites) and (b) n = 104 rectal MRIs (3 local sites). MRQy measures revealed significant site-specific variations in both cohorts, indicating potential batch effects. Before processing, MRQy measures could be used to identify each of the seven sites within the TCIA cohort with 87.5%, 86.4%, 90%, 93%, 90%, 60%, and 92.9% accuracy and the three sites within the rectal cohort with 91%, 82.8%, and 88.9% accuracy using unsupervised clustering. After processing, none of the sites could be distinctively clustered via MRQy measures in either cohort; suggesting that batch effects had been largely accounted for. Marked differences in specific MRQy measures were also able to identify outlier MRI datasets that needed to be corrected for common acquisition artifacts. CONCLUSIONS: MRQy is designed to be a standalone, unsupervised tool that can be efficiently run on a standard desktop computer. It has been made freely accessible and open-source at http://github.com/ccipd/MRQy for community use and feedback.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Estudios de Cohortes , Humanos , Procesamiento de Imagen Asistido por Computador , Control de Calidad
17.
Med Phys ; 47(12): 6039-6052, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33118182

RESUMEN

PURPOSE: The availability of radiographic magnetic resonance imaging (MRI) scans for the Ivy Glioblastoma Atlas Project (Ivy GAP) has opened up opportunities for development of radiomic markers for prognostic/predictive applications in glioblastoma (GBM). In this work, we address two critical challenges with regard to developing robust radiomic approaches: (a) the lack of availability of reliable segmentation labels for glioblastoma tumor sub-compartments (i.e., enhancing tumor, non-enhancing tumor core, peritumoral edematous/infiltrated tissue) and (b) identifying "reproducible" radiomic features that are robust to segmentation variability across readers/sites. ACQUISITION AND VALIDATION METHODS: From TCIA's Ivy GAP cohort, we obtained a paired set (n = 31) of expert annotations approved by two board-certified neuroradiologists at the Hospital of the University of Pennsylvania (UPenn) and at Case Western Reserve University (CWRU). For these studies, we performed a reproducibility study that assessed the variability in (a) segmentation labels and (b) radiomic features, between these paired annotations. The radiomic variability was assessed on a comprehensive panel of 11 700 radiomic features including intensity, volumetric, morphologic, histogram-based, and textural parameters, extracted for each of the paired sets of annotations. Our results demonstrated (a) a high level of inter-rater agreement (median value of DICE ≥0.8 for all sub-compartments), and (b) ≈24% of the extracted radiomic features being highly correlated (based on Spearman's rank correlation coefficient) to annotation variations. These robust features largely belonged to morphology (describing shape characteristics), intensity (capturing intensity profile statistics), and COLLAGE (capturing heterogeneity in gradient orientations) feature families. DATA FORMAT AND USAGE NOTES: We make publicly available on TCIA's Analysis Results Directory (https://doi.org/10.7937/9j41-7d44), the complete set of (a) multi-institutional expert annotations for the tumor sub-compartments, (b) 11 700 radiomic features, and (c) the associated reproducibility meta-analysis. POTENTIAL APPLICATIONS: The annotations and the associated meta-data for Ivy GAP are released with the purpose of enabling researchers toward developing image-based biomarkers for prognostic/predictive applications in GBM.


Asunto(s)
Glioblastoma , Estudios de Cohortes , Glioblastoma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados
18.
Clin Cancer Res ; 26(8): 1866-1876, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32079590

RESUMEN

PURPOSE: To (i) create a survival risk score using radiomic features from the tumor habitat on routine MRI to predict progression-free survival (PFS) in glioblastoma and (ii) obtain a biological basis for these prognostic radiomic features, by studying their radiogenomic associations with molecular signaling pathways. EXPERIMENTAL DESIGN: Two hundred three patients with pretreatment Gd-T1w, T2w, T2w-FLAIR MRI were obtained from 3 cohorts: The Cancer Imaging Archive (TCIA; n = 130), Ivy GAP (n = 32), and Cleveland Clinic (n = 41). Gene-expression profiles of corresponding patients were obtained for TCIA cohort. For every study, following expert segmentation of tumor subcompartments (necrotic core, enhancing tumor, peritumoral edema), 936 3D radiomic features were extracted from each subcompartment across all MRI protocols. Using Cox regression model, radiomic risk score (RRS) was developed for every protocol to predict PFS on the training cohort (n = 130) and evaluated on the holdout cohort (n = 73). Further, Gene Ontology and single-sample gene set enrichment analysis were used to identify specific molecular signaling pathway networks associated with RRS features. RESULTS: Twenty-five radiomic features from the tumor habitat yielded the RRS. A combination of RRS with clinical (age and gender) and molecular features (MGMT and IDH status) resulted in a concordance index of 0.81 (P < 0.0001) on training and 0.84 (P = 0.03) on the test set. Radiogenomic analysis revealed associations of RRS features with signaling pathways for cell differentiation, cell adhesion, and angiogenesis, which contribute to chemoresistance in GBM. CONCLUSIONS: Our findings suggest that prognostic radiomic features from routine Gd-T1w MRI may also be significantly associated with key biological processes that affect response to chemotherapy in GBM.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/mortalidad , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Mutación , Medición de Riesgo/métodos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Transducción de Señal , Tasa de Supervivencia , Adulto Joven
19.
Neurooncol Adv ; 2(Suppl 4): iv3-iv14, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33521636

RESUMEN

Neuro-oncology largely consists of malignancies of the brain and central nervous system including both primary as well as metastatic tumors. Currently, a significant clinical challenge in neuro-oncology is to tailor therapies for patients based on a priori knowledge of their survival outcome or treatment response to conventional or experimental therapies. Radiomics or the quantitative extraction of subvisual data from conventional radiographic imaging has recently emerged as a powerful data-driven approach to offer insights into clinically relevant questions related to diagnosis, prediction, prognosis, as well as assessing treatment response. Furthermore, radiogenomic approaches provide a mechanism to establish statistical correlations of radiomic features with point mutations and next-generation sequencing data to further leverage the potential of routine MRI scans to serve as "virtual biopsy" maps. In this review, we provide an introduction to radiomic and radiogenomic approaches in neuro-oncology, including a brief description of the workflow involving preprocessing, tumor segmentation, and extraction of "hand-crafted" features from the segmented region of interest, as well as identifying radiogenomic associations that could ultimately lead to the development of reliable prognostic and predictive models in neuro-oncology applications. Lastly, we discuss the promise of radiomics and radiogenomic approaches in personalizing treatment decisions in neuro-oncology, as well as the challenges with clinical adoption, which will rely heavily on their demonstrated resilience to nonstandardization in imaging protocols across sites and scanners, as well as in their ability to demonstrate reproducibility across large multi-institutional cohorts.

20.
J Med Imaging (Bellingham) ; 6(2): 024005, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31093517

RESUMEN

Accurate segmentation of gliomas on routine magnetic resonance image (MRI) scans plays an important role in disease diagnosis, prognosis, and patient treatment planning. We present a fully automated approach, radiomics-based convolutional neural network (RadCNN), for segmenting both high- and low-grade gliomas using multimodal MRI volumes (T1c, T2w, and FLAIR). RadCNN incorporates radiomic texture features (i.e., Haralick, Gabor, and Laws) within DeepMedic [a deep 3-D convolutional neural network (CNN) segmentation framework that uses image intensities; a top performing method in the BraTS 2016 challenge] to further augment the performance of brain tumor subcompartment segmentation. We first identify textural radiomic representations that best separate the different subcompartments [enhancing tumor (ET), whole tumor (WT), and tumor core (TC)] on the training set, and then feed these representations as inputs to the CNN classifier for prediction of different subcompartments. We hypothesize that textural radiomic representations of lesion subcompartments will enhance the separation of subcompartment boundaries, and hence providing these features as inputs to the deep CNN, over and above raw intensity values alone, will improve the subcompartment segmentation. Using a training set of N = 241 patients, validation set of N = 44 , and test set of N = 46 patients, RadCNN method achieved Dice similarity coefficient (DSC) scores of 0.71, 0.89, and 0.73 for ET, WT, and TC, respectively. Compared to the DeepMedic model, RadCNN showed improvement in DSC scores for both ET and WT and demonstrated comparable results in segmenting the TC. Similarly, smaller Hausdorff distance measures were obtained with RadCNN as compared to the DeepMedic model across all the subcompartments. Following the segmentation of the different subcompartments, we extracted a set of subcompartment specific radiomic descriptors that capture lesion disorder and assessed their ability in separating patients into different survival cohorts (short-, mid- and long-term survival) based on their overall survival from the date of baseline diagnosis. Using a multilinear regression approach, we achieved accuracies of 0.57, 0.63, and 0.45 for the training, validation, and test cases, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...