Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Comp Physiol B ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955877

RESUMEN

Southern Distinct Population Segment (sDPS) green sturgeon spawn solely in one stretch of the Sacramento River in California. Management of this spawning habitat is complicated by cold water temperature requirements for the conservation of winter-run Chinook salmon. This study assessed whether low incubation and rearing temperatures resulted in carryover effects across embryo to early juvenile life stages on scaling relationships in growth and metabolism in northern DPS green sturgeon used as a proxy for sDPS green sturgeon. Fish were incubated and reared at 11 °C and 15 °C, with a subset experiencing a reciprocal temperature transfer post-hatch, to assess recovery from cold incubation or to simulate a cold-water dam release which would chill rearing larvae. Growth and metabolic rate of embryos and larvae were measured to 118 days post hatch. Reciprocal temperature transfers revealed a greater effect of low temperature exposure during larval rearing rather than during egg incubation. While 11 °C eggs hatched at a smaller length, log-transformed length-weight relationships showed that these differences in developmental trajectory dissipated as individuals achieved juvenile morphology. However, considerable size-at-age differences persisted between rearing temperatures, with 15 °C fish requiring 60 days post-hatch to achieve 1 g in mass, whereas 11 °C fish required 120 days to achieve 1 g, resulting in fish of the same age at the completion of the experiment with a ca. 37-fold difference in weight. Consequently, our study suggests that cold rearing temperatures have far more consequential downstream effects than cold embryo incubation temperatures. Growth delays from 11 °C rearing temperatures would greatly increase the period of vulnerability to predation in larval green sturgeon. The scaling relationship between log-transformed whole-body metabolism and mass exhibited a steeper slope and thus an increased oxygen requirement with size in 11 °C reared fish, potentially indicating an energetically unsustainable situation. Understanding how cold temperatures affect green sturgeon ontogeny is necessary to refine our larval recruitment estimations for this threatened species.

2.
Conserv Physiol ; 11(1): coad036, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383481

RESUMEN

The San Francisco Estuary (SFE) is one of the most degraded ecosystems in the United States, and organisms that inhabit it are exposed to a suite of environmental stressors. The delta smelt (Hypomesus transpacificus), a small semi-anadromous fish endemic to the SFE and considered an indicator species, is close to extinction in the wild. The goal of this study was to investigate how environmental alterations to the SFE, such as reductions in turbidities, higher temperatures and increased prevalence of invasive predators affect the physiology and stress response of juvenile delta smelt. Juvenile delta smelt were exposed to two temperatures (17 and 21°C) and two turbidities (1-2 and 10-11 NTU) for 2 weeks. After the first week of exposure, delta smelt were exposed to a largemouth bass (Micropterus salmoides) predator cue at the same time every day for 7 days. Fish were measured and sampled on the first (acute) and final (chronic) day of exposures to predator cues and later analyzed for whole-body cortisol, glucose, lactate, and protein. Length and mass measurements were used to calculate condition factor of fish in each treatment. Turbidity had the greatest effect on juvenile delta smelt and resulted in reduced cortisol, increased glucose and lactate, and greater condition factor. Elevated temperatures reduced available energy in delta smelt, indicated by lower glucose and total protein, whereas predator cue exposure had negligible effects on their stress response. This is the first study to show reduced cortisol in juvenile delta smelt held in turbid conditions and adds to the growing data that suggest this species performs best in moderate temperatures and turbidities. Multistressor experiments are necessary to understand the capacity of delta smelt to respond to the multivariate and dynamic changes in their natural environment, and results from this study should be considered for management-based conservation efforts.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36049729

RESUMEN

The Delta Smelt (Hypomesus transpacificus), once an abundant fish endemic to the Sacramento-San Joaquin Estuary, is now on the brink of extinction. Due to the high sensitivity of this species, knowledge of their stress response will be vital to their future survival and sustainability. Understanding the magnitude and kinetics of cortisol induction in Delta Smelt will provide valuable information when interpreting the degree of environmentally relevant stressors, such as warming and predator exposure. As little is known about the primary stress response and cortisol dynamics in Delta Smelt, the first aim of this study was to measure basal and maximal whole-body cortisol prior to and following exposure to a sublethal and significant netting stress at 17 and 21 °C. Our findings reveal that juvenile Delta Smelt held at 21 °C display an exacerbated stress response and a reduction in available energy compared to fish held at 17 °C. There was no evidence of the secondary stress response to the netting stress as whole-body glucose and lactate levels in treatment groups remained similar to basal values. The second aim of this study was to investigate the effect of a largemouth bass (Micropterus salmoides) predator cue, which was found to induce a significant increase in cortisol relative to control levels in juvenile Delta Smelt. Indices such as cortisol can be used as bioindicators of stress in the field and results from this study suggest that moderate temperatures and reduced predation are optimal release conditions during hatchery-based supplementation to minimize stress to this highly sensitive species.


Asunto(s)
Osmeriformes , Animales , Especies en Peligro de Extinción , Biomarcadores Ambientales , Glucosa , Hidrocortisona , Lactatos , Osmeriformes/fisiología
5.
J Comp Physiol B ; 192(6): 737-750, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36104549

RESUMEN

Notothenioidei fishes have evolved under stable cold temperatures; however, ocean conditions are changing globally, with polar regions poised to experience the greatest changes in environmental factors, such as warming. These stressors have the potential to dramatically affect energetic demands, and the persistence of the notothenioids will be dependent on metabolic capacity, or the ability to match energy supply with energy demand, to restore homeostasis in the face of changing climate conditions. In this study we examined aerobic metabolic capacity in three species, Trematomus bernacchii, T. pennellii and T. newnesi, and between two life stages, juvenile and adult, by assessing mitochondrial function of permeabilized cardiac fibers. Respiratory capacity differed among the adult notothenioids in this study, with greater oxidative phosphorylation (OXPHOS) respiration in the pelagic T. newnesi than the benthic T. bernacchii and T. pennellii. The variation in mitochondrial respiratory capacity was likely driven by differences in the mitochondrial content, as measured by citrate synthase activity, which was the highest in T. newnesi. In addition to high OXPHOS, T. newnesi exhibited lower LEAK respiration, resulting in greater mitochondrial efficiency than either T. bernacchii or T. pennellii. Life stage largely had an effect on mitochondrial efficiency and excess complex IV capacity, but there were little differences in OXPHOS respiration and electron transfer capacity, pointing to a lack of significant differences in the metabolic capacity between juveniles and adults. Overall, these results demonstrate species-specific differences in cardiac metabolic capacity, which may influence the acclimation potential of notothenioid fishes to changing environmental conditions.


Asunto(s)
Perciformes , Aclimatación/fisiología , Animales , Regiones Antárticas , Citrato (si)-Sintasa/metabolismo , Peces/fisiología , Mitocondrias , Perciformes/fisiología
6.
J Exp Biol ; 225(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35749162

RESUMEN

Climate change is forecasted to increase temperature variability and stochasticity. Most of our understanding of thermal physiology of intertidal organisms has come from laboratory experiments that acclimate organisms to submerged conditions and steady-state increases in temperatures. For organisms experiencing the ebb and flow of tides with unpredictable low tide aerial temperatures, the reliability of reported tolerances and thus predicted responses to climate change requires incorporation of environmental complexity into empirical studies. Using the mussel Mytilus californianus, our study examined how stochasticity of the thermal regime influences physiological performance. Mussels were acclimated to either submerged conditions or a tidal cycle that included either predictable, unpredictable or no thermal stress during daytime low tide. Physiological performance was measured through anaerobic metabolism, energy stores and cellular stress mechanisms just before low tide, and cardiac responses during a thermal ramp. Both air exposure and stochasticity of temperature change were important in determining thermal performance. Glycogen content was highest in the mussels from the unpredictable treatment, but there was no difference in the expression of heat shock proteins between thermal treatments, suggesting that mussels prioritise energy reserves to deal with unpredictable low tide conditions. Mussels exposed to fluctuating thermal regimes had lower gill anaerobic metabolism, which could reflect increased metabolic capacity. Our results suggest that although thermal magnitude plays an important role in shaping physiological performance, other key elements of the intertidal environment complexity such as stochasticity, thermal variability and thermal history are also important considerations for determining how species will respond to climate warming.


Asunto(s)
Mytilus , Aclimatación , Animales , Cambio Climático , Calor , Mytilus/fisiología , Reproducibilidad de los Resultados , Temperatura
7.
Conserv Physiol ; 9(1): coab054, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257996

RESUMEN

Warming and hypoxia are two stressors commonly found within natural salmon redds that are likely to co-occur. Warming and hypoxia can interact physiologically, but their combined effects during fish development remain poorly studied, particularly stage-specific effects and potential carry-over effects. To test the impacts of warm water temperature and hypoxia as individual and combined developmental stressors, late fall-run Chinook salmon embryos were reared in 10 treatments from fertilization through hatching with two temperatures [10°C (ambient) and 14°C (warm)], two dissolved oxygen saturation levels [normoxia (100% air saturation, 10.4-11.4 mg O2/l) and hypoxia (50% saturation, 5.5 mg O2/l)] and three exposure times (early [eyed stage], late [silver-eyed stage] and chronic [fertilization through hatching]). After hatching, all treatments were transferred to control conditions (10°C and 100% air saturation) through the fry stage. To study stage-specific effects of stressor exposure we measured routine metabolic rate (RMR) at two embryonic stages, hatching success and growth. To evaluate carry-over effects, where conditions during one life stage influence performance in a later stage, RMR of all treatments was measured in control conditions at two post-hatch stages and acute stress tolerance was measured at the fry stage. We found evidence of stage-specific effects of both stressors during exposure and carry-over effects on physiological performance. Both individual stressors affected RMR, growth and developmental rate while multiple stressors late in development reduced hatching success. RMR post-hatch showed persistent effects of embryonic stressor exposure that may underlie differences observed in developmental timing and acute stress tolerance. The responses to stressors that varied by stage during development suggest that stage-specific management efforts could support salmon embryo survival. The persistent carry-over effects also indicate that considering sub-lethal effects of developmental stressor exposure may be important to understanding how climate change influences the performance of salmon across life stages.

8.
Conserv Physiol ; 9(1): coab009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859825

RESUMEN

Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human-induced environmental change; (iii) human-wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions.

9.
Integr Comp Biol ; 60(6): 1425-1437, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32814956

RESUMEN

Antarctic fishes have evolved under stable, extreme cold temperatures for millions of years. Adapted to thrive in the cold environment, their specialized phenotypes will likely render them particularly susceptible to future ocean warming and acidification as a result of climate change. Moving from a period of stability to one of environmental change, species persistence will depend on maintaining energetic equilibrium, or sustaining the increased energy demand without compromising important biological functions such as growth and reproduction. Metabolic capacity to acclimate, marked by a return to metabolic equilibrium through physiological compensation of routine metabolic rate (RMR), will likely determine which species will be better poised to cope with shifts in environmental conditions. Focusing on the suborder Notothenioidei, a dominant group of Antarctic fishes, and in particular four well-studied species, Trematomus bernacchii, Pagothenia borchgrevinki, Notothenia rossii, and N. coriiceps, we discuss metabolic acclimation potential to warming and CO2-acidification using an integrative and comparative framework. There are species-specific differences in the physiological compensation of RMR during warming and the duration of acclimation time required to achieve compensation; for some species, RMR fully recovered within 3.5 weeks of exposure, such as P. borchgrevinki, while for other species, such as N. coriiceps, RMR remained significantly elevated past 9 weeks of exposure. In all instances, added exposure to increased PCO2, further compromised the ability of species to return RMR to pre-exposure levels. The period of metabolic imbalance, marked by elevated RMR, was underlined by energetic disturbance and elevated energetic costs, which shifted energy away from fitness-related functions, such as growth. In T. bernacchii and N. coriiceps, long duration of elevated RMR impacted condition factor and/or growth rate. Low growth rate can affect development and ultimately the timing of reproduction, severely compromising the species' survival potential and the biodiversity of the notothenioid lineage. Therefore, the ability to achieve full compensation of RMR, and in a short-time frame, in order to avoid long term consequences of metabolic imbalance, will likely be an important determinant in a species' capacity to persist in a changing environment. Much work is still required to develop our understanding of the bioenergetics of Antarctic fishes in the face of environmental change, and a targeted approach of nesting a mechanistic focus in an ecological and comparative framework will better aid our predictions on the effect of global climate change on species persistence in the polar regions.


Asunto(s)
Perciformes , Condicionamiento Físico Animal , Aclimatación , Animales , Regiones Antárticas , Peces , Océanos y Mares
10.
Conserv Physiol ; 8(1): coaa034, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391152

RESUMEN

The practice of mitigating cannibalism in aquaculture is an important focus for hatcheries seeking to maximize yield and has been maintained in hatcheries focusing on wild stock restoration. We hypothesize, however, that a cannibal feeding strategy may confer performance advantages over a non-cannibal feeding strategy and that perhaps cannibal size grading may not be optimal for hatcheries focusing on conservation goals. This study examined metabolic performance differences between cannibal and non-cannibal burbot, Lota lota maculosa, at the Kootenai Tribe of Idaho Twin Rivers Hatchery in Moyie Springs, ID, USA. After habitat alteration led to functional extinction of burbot in the region, the Twin Rivers Hatchery has played a leading role in the reestablishment of burbot in the Kootenai River, ID, and British Columbia. We examined morphometric data (weight, length and condition factor), whole animal resting metabolic rate and the enzyme activity of lactate dehydrogenase, citrate synthase and 3-hydroxyacyl-CoA dehydrogenase to describe the baseline metabolic performance of cannibal and non-cannibal burbot. Taken together, our results demonstrated significant differences in the metabolic strategies of cannibal vs. non-cannibal burbot, where cannibals relied more heavily on carbohydrate metabolism and non-cannibals relied more heavily on glycolytic and lipid metabolism. This study demonstrates the need to reevaluate the traditional practice of removing cannibal fish in conservation hatcheries, as it may not be the ideal strategy of raising the most robust individuals for release. When natural habitat conditions cannot be restored due to permanent habitat alteration, prioritizing release of higher performing individuals could help achieve conservation goals.

11.
Conserv Physiol ; 8(1): coaa016, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32274063

RESUMEN

Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become commonplace and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider how conservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a 'horizon scan', we further explore ways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmental management and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users.

12.
Conserv Physiol ; 7(1): coz035, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281658

RESUMEN

Reversing global declines in the abundance and diversity of fishes is dependent on science-based conservation solutions. A wealth of data exist on the ecophysiological constraints of many fishes, but much of this information is underutilized in recovery plans due to a lack of synthesis. Here, we used the imperiled green sturgeon (Acipenser medirostris) as an example of how a quantitative synthesis of physiological data can inform conservation plans, identify knowledge gaps and direct future research actions. We reviewed and extracted metadata from peer-reviewed papers on green sturgeon. A total of 105 publications were identified, spanning multiple disciplines, with the primary focus being conservation physiology (23.8%). A meta-analytical approach was chosen to summarize the mean effects of prominent stressors (elevated temperatures, salinity, low food availability and contaminants) on several physiological traits (growth, thermal tolerance, swimming performance and heat shock protein expression). All examined stressors significantly impaired green sturgeon growth, and additional stressor-specific costs were documented. These findings were then used to suggest several management actions, such as mitigating salt intrusion in nursery habitats and maintaining water temperatures within optimal ranges during peak spawning periods. Key data gaps were also identified; research efforts have been biased towards juvenile (38.1%) and adult (35.2%) life-history stages, and less data are available for early life-history stages (embryonic, 11.4%; yolk-sac larvae, 12.4%; and post yolk-sac larvae, 16.2%). Similarly, most data were collected from single-stressor studies (91.4%) and there is an urgent need to understand interactions among stressors as anthropogenic change is multi-variate and dynamic. Collectively, these findings provide an example of how meta-analytic reviews are a powerful tool to inform management actions, with the end goal of maximizing conservation gains from research efforts.

13.
Conserv Physiol ; 7(1): coy076, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30842886

RESUMEN

In many aquatic systems, native fishes are in decline and the factors responsible are often elusive. In the San Francisco Estuary (SFE) in California, interactions among native and non-native species are key factors contributing to the decline in abundance of endemic, endangered Delta Smelt (Hypomesus transpacificus). Climate change and drought-related stressors are further exacerbating declines. To assess how multiple environmental changes affect the physiology of native Delta Smelt and non-native Mississippi Silverside (Menidia beryllina) and Largemouth Bass (Micropterus salmoides), fishes were exposed to serial exposures of a single stressor (elevated temperature or salinity) followed by two stressors (elevated temperature and salinity) to determine how a single stressor affects the capacity to cope with the addition of a second stressor. Critical thermal maximum (CTMax; a measure of upper temperature tolerance) was determined after 0, 2, 4 and 7 days following single and multiple stressors of elevated temperature (16°C vs. 20°C) and salinity (2.4 vs. 8-12 ppt, depending on species). Under control conditions, non-native fishes had significantly higher CTMax than the native Delta Smelt. An initial temperature or salinity stressor did not negatively affect the ability of any species to tolerate a subsequent multiple stressor. While elevated salinity had little effect on CTMax, a 4°C increase in temperature increased CTMax. Bass experienced an additive effect of increased temperature and salinity on CTMax, such that CTMax further increased under multiple stressors. In addition, Bass demonstrated physiological sensitivity to multiple stressors demonstrated by changes in hematocrit and plasma osmolality, whereas the physiology of Silversides remained unaffected. Non-native Bass and Mississippi Silversides showed consistently higher thermal tolerance limits than the native Delta Smelt, supporting their abundance in warmer SFE habitats. Continued increases in SFE water temperatures predicted with climate change may further impact endangered Delta Smelt populations directly if habitat temperatures exceed thermal limits.

14.
Conserv Physiol ; 7(1): coy078, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30834124

RESUMEN

Early life stages of salmonids are particularly vulnerable to warming and hypoxia, which are common stressors in hyporheic, gravel bed, rearing habitat (i.e. a 'redd'). With the progression of global climate change, high temperatures and hypoxia may co-occur more frequently within redds, particularly for salmonid species at their southern range limit. Warming and hypoxia have competing effects on energy supply and demand, which can be detrimental to energy-limited early life stages. We examined how elevated temperature and hypoxia as individual and combined stressors affected the survival, physiological performance, growth, and development of Chinook salmon (Oncorhynchus tshawytscha). We reared late fall-run Chinook salmon from fertilization to the fry stage in a fully factorial design of two temperatures [10°C (ambient) and 14°C (warm)] and two oxygen levels [normoxia (100% air saturation, 10 mg O2/l) and hypoxia (50% saturation, 5.5 mg O2/l)]. Rearing in hypoxia significantly reduced hatching success, especially in combination with warming. Both warming and hypoxia improved acute thermal tolerance. While rearing in hypoxia improved tolerance to acute hypoxia stress, warming reduced hypoxia tolerance. Hypoxia-reared fish were smaller at hatch, but were able to reach similar sizes to the normoxia-reared fish by the fry stage. High temperature and normoxia resulted in the fastest rate of development while low temperature and hypoxia resulted in the slowest rate of development. Despite improved physiological tolerance to acute heat and hypoxia stress, hypoxia-reared embryos had reduced survival and growth, which could have larger population-level effects. These results suggest that both warming and hypoxia are important factors to address in conservation strategies for Chinook salmon.

15.
Artículo en Inglés | MEDLINE | ID: mdl-30447389

RESUMEN

Previous studies have demonstrated reduced performance in triploid fish when reared under suboptimal conditions, which may be the result of a higher susceptibility to stressors when compared to diploids. The goal of this project was to investigate differences in the capacity of diploid (8 N) and triploid (12 N) white sturgeon, Acipenser transmontanus, to respond to both warm acclimation (6-weeks of acclimation to either 18 or 22 °C) and a subsequent acute stress (10-min low water stress). Following the 6-week acclimation, fish were sampled either before or following an acute low water stress. Bioindices of the primary and secondary stress response, hematology and cellular metabolic status were measured. We also sought to determine if time to peak cortisol levels were similar between diploid and triploid sturgeon after exposure to a severe acute stressor (netting stress). While both ploidies had similar primary and secondary responses to acute stress, both with and without warm acclimation, warm acclimation impacted the ability of diploid and triploid white sturgeon to mount a typical stress response to an acute stressor. In response to warm acclimation, triploids exhibited little change in branchial lactate dehydrogenase activity, while diploids increased activity. After exposure to an acute water reduction stress, diploids increased citrate synthase activity, yet triploids showed a decrease in activity. Differences in metabolic enzyme activity in response to warm acclimation and acute stress suggest triploid white sturgeon may have a reduced cellular metabolic capacity under chronic and acute stress, which may impact performance of triploid sturgeon in suboptimal conditions.


Asunto(s)
Aclimatación , Peces/genética , Estrés Fisiológico , Temperatura , Triploidía , Animales , Peces/fisiología , Hidrocortisona/sangre , Agua
16.
J Therm Biol ; 76: 147-155, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30143289

RESUMEN

Human-induced thermal variability can disrupt energy balance and performance in ectotherms; however, phenotypic plasticity may play a pivotal protective role. Ectotherm performance can be maintained in thermally heterogeneous habitats by reducing the thermal sensitivity of physiological processes and concomitant performance. We examined the capacity of juvenile green sturgeon (Acipenser medirostris) to respond to daily thermal variation. Juveniles (47 days post-hatch) were exposed to either stable (15 ±â€¯0.5 °C) or variable (narrowly variable: 13-17 °C day-1 or widely variable 11-21 °C day-1) thermoperiod treatments, with equivalent mean temperatures (15 ±â€¯0.5 °C), for 21 days. Growth (relative growth rate, % body mass gain), upper thermal tolerance (critical thermal maxima, CTMax) and the thermal sensitivity of swimming performance (critical swimming speed, Ucrit) were assessed in fish from all treatments. Accelerated growth was observed in fish maintained under widely variable temperatures compared to narrowly variable and stable temperatures. No significant variation in CTMax was observed among thermoperiod treatments, suggesting all treatment groups acclimated to the mean temperature rather than daily maximums. The widely variable treatment induced a plastic response in swimming performance, where Ucrit was insensitive to temperature and performance was maintained across a widened thermal breadth. Maximum Ucrit attained was similar among thermoperiod treatments, but performance was maximised at different test temperatures (stable: 4.62 ±â€¯0.44 BL s-1 at 15 °C; narrowly variable: 4.52 ±â€¯0.23 BL s-1 at 21 °C; widely variable: 3.90 ±â€¯0.24 BL s-1 at 11 °C, mean ±â€¯s.e.m.). In combination, these findings suggest juvenile A. medirostris are resilient to daily fluctuations in temperature, within the temperature range tested here.


Asunto(s)
Aclimatación , Peces/fisiología , Animales , Femenino , Peces/crecimiento & desarrollo , Masculino , Natación , Temperatura
17.
Conserv Physiol ; 6(1): coy038, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30018763

RESUMEN

California's coastal ecosystems are forecasted to undergo shifting ocean conditions due to climate change, some of which may negatively impact recreational and commercial fish populations. To understand if fish populations have the capacity to respond to multiple stressors, it is critical to examine interactive effects across multiple biological scales, from cellular metabolism to species interactions. This study examined the effects of CO2-acidification and hypoxia on two naturally co-occurring species, juvenile rockfish (genus Sebastes) and a known predator, cabezon (Scorpaenichthys marmoratus). Fishes were exposed to two PCO2 levels at two dissolved oxygen (DO) levels: ~600 (ambient) and ~1600 (high) µatm PCO2 and 8.0 (normoxic) and 4.5 mg l-1 DO (hypoxic) and assessments of cellular metabolism, prey behavior and predation mortality rates were quantified after 1 and 3 weeks. Physiologically, rockfish showed acute alterations in cellular metabolic enzyme activity after 1 week of acclimation to elevated PCO2 and hypoxia that were not evident in cabezon. Alterations in rockfish energy metabolism were driven by increases in anaerobic LDH activity, and adjustments in enzyme activity ratios of cytochrome c oxidase and citrate synthase and LDH:CS. Correlated changes in rockfish behavior were also apparent after 1 week of acclimation to elevated PCO2 and hypoxia. Exploration behavior increased in rockfish exposed to elevated PCO2 and spatial analysis of activity indicated short-term interference with anti-predator responses. Predation rate after 1 week increased with elevated PCO2; however, no mortality was observed under the multiple-stressor treatment suggesting negative effects on cabezon predators. Most noteworthy, metabolic and behavioral changes were moderately compensated after 3 weeks of acclimation, and predation mortality rates also decreased suggesting that these rockfish may be resilient to changes in environmental stressors predicted by climate models. Linking physiological and behavioral responses to multiple stressors is vital to understand impacts on populations and community dynamics.

18.
Artículo en Inglés | MEDLINE | ID: mdl-29864517

RESUMEN

Previous studies suggest fish with additional copies of their genome (polyploids) underperform in suboptimal conditions and may be more susceptible to stress and disease. The objective of this study was to determine the role ploidy plays in the physiological response of white sturgeon to chronically elevated water temperatures. White sturgeon of two ploidies (8 N and 10 N) were acclimated to ambient (18 °C) and warm (22 °C) water. Bioindices of stress (plasma cortisol, glucose and lactate, total erythrocyte count, hematocrit, hemoglobin, mean erythrocyte volume, mean erythrocyte hemoglobin, and mean erythrocyte hemoglobin concentration), immunity (respiratory burst, plasma lysozyme, and total leukocyte count), and cellular metabolic capacity (lactate dehydrogenase and citrate synthase activity) were measured before and after a 6-week acclimation period. Both ploidies appear comparable in their constitutive immune and stress parameters and respond similarly to warming. Hematological indices suggest 8 N and 10 N sturgeon are similar in oxygen carrying capacity; however, differences in enzyme activity between ploidies indicate that 10 N sturgeon may have a lower cellular aerobic capacity. Our results have implications for the screening and management of ploidy on white sturgeon farms and hatcheries, as the differences between ploidies may affect 10 N sturgeon performance at elevated water temperatures. Further research is needed to elucidate the differences in inducible stress and immune responses and metabolism of white sturgeon of different ploidies.


Asunto(s)
Aclimatación , Peces/genética , Peces/fisiología , Inmunidad Innata , Ploidias , Estrés Fisiológico , Temperatura , Animales , Glucemia/metabolismo , Citrato (si)-Sintasa/metabolismo , Femenino , Proteínas de Peces/metabolismo , Peces/inmunología , Peces/metabolismo , Branquias/enzimología , Hidrocortisona/sangre , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/sangre , Masculino , Análisis de Componente Principal
19.
J Exp Biol ; 221(Pt 2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29378879

RESUMEN

There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Peces/genética , Transcriptoma , Animales
20.
J Comp Physiol B ; 188(2): 271-282, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28988313

RESUMEN

For ectotherms, temperature modifies the rate of physiological function across a temperature tolerance window depending on thermal history, ontogeny, and evolutionary history. Some adult Antarctic fishes, with comparatively narrow thermal windows, exhibit thermal plasticity in standard metabolic rate; however, little is known about the shape or breadth of thermal performance curves of earlier life stages of Antarctic fishes. We tested the effects of acute warming (- 1 to 8 °C) and temperature acclimation (2 weeks at - 1, 2, 4 °C) on survival and standard metabolic rate in early embryos of the dragonfish Gymnodraco acuticeps from McMurdo Sound, Ross Island, Antarctica. Contrary to predictions, embryos acclimated to warmer temperatures did not experience greater mortality and nearly all embryos survived acute warming to 8 °C. Metabolic performance curve height and shape were both significantly altered after 2 weeks of development at - 1 °C, with further increase in curve height, but not alteration of shape, with warm temperature acclimation. Overall metabolic rate temperature sensitivity (Q 10) from - 1 to 8 °C varied from 2.6 to 3.6, with the greatest thermal sensitivity exhibited by embryos at earlier developmental stages. Interclutch variation in metabolic rates, mass, and development of simultaneously collected embryos was also documented. Taken together, metabolic performance curves provide insight into the costs of early development under warming temperatures, with the potential for thermal sensitivity to be modified by dragonfish phenology and magnitude of seasonal changes in temperature.


Asunto(s)
Embrión no Mamífero/fisiología , Perciformes/fisiología , Termotolerancia/fisiología , Animales , Regiones Antárticas , Metabolismo Basal , Consumo de Oxígeno , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...