Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(6): 1084-1099, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38723630

RESUMEN

Transcriptome-wide association studies (TWASs) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have focused on the regulatory effects of risk-associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWASs of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole-genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents an in-depth look into the role of trans eQTLs in the complex molecular mechanisms underlying these diseases.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Ováricas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Teorema de Bayes , Transcriptoma , Regulación Neoplásica de la Expresión Génica
2.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014246

RESUMEN

Transcriptome-wide association studies (TWAS) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have only considered regulatory effects of risk associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWAS of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents a first look into the role of trans-eQTLs in the complex molecular mechanisms underlying these diseases.

3.
Genetics ; 214(2): 295-303, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31843756

RESUMEN

Standard methods for case-control association studies of rare variation often treat disease outcome as a dichotomous phenotype. However, both theoretical and experimental studies have demonstrated that subjects with a family history of disease can be enriched for risk variation relative to subjects without such history. Assuming family history information is available, this observation motivates the idea of replacing the standard dichotomous outcome variable used in case-control studies with a more informative ordinal outcome variable that distinguishes controls (0), sporadic cases (1), and cases with a family history (2), with the expectation that we should observe increasing number of risk variants with increasing category of the ordinal variable. To leverage this expectation, we propose a novel rare-variant association test that incorporates family history information based on our previous GAMuT framework for rare-variant association testing of multivariate phenotypes. We use simulated data to show that, when family history information is available, our new method outperforms standard rare-variant association methods, like burden and SKAT tests, that ignore family history. We further illustrate our method using a rare-variant study of cleft lip and palate.


Asunto(s)
Enfermedad/genética , Estudios de Asociación Genética/métodos , Variación Genética/genética , Simulación por Computador , Familia , Genotipo , Humanos , Modelos Genéticos , Modelos Estadísticos , Linaje , Fenotipo
4.
Biomolecules ; 9(5)2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31126114

RESUMEN

Liquid-chromatography mass spectrometry is commonly used to identify and quantify metabolites from biological samples to gain insight into human physiology and pathology. Metabolites and their abundance in biological samples are labile and sensitive to variations in collection conditions, handling and processing. Variations in sample handling could influence metabolite levels in ways not related to biology, ultimately leading to the misinterpretation of results. For example, anticoagulants and preservatives modulate enzyme activity and metabolite oxidization. Temperature may alter both enzymatic and non-enzymatic chemistry. The potential for variation induced by collection conditions is particularly important when samples are collected in remote locations without immediate access to specimen processing. Data are needed regarding the variation introduced by clinical sample collection processes to avoid introducing artifact biases. In this study, we used metabolomics and lipidomics approaches paired with univariate and multivariate statistical analyses to assess the effects of anticoagulant, temperature, and time on healthy human plasma samples collected to provide guidelines on sample collection, handling, and processing for vaccinology. Principal component analyses demonstrated clustering by sample collection procedure and that anticoagulant type had the greatest effect on sample metabolite variation. Lipids such as glycerophospholipids, acylcarnitines, sphingolipids, diacylglycerols, triacylglycerols, and cholesteryl esters are significantly affected by anticoagulant type as are amino acids such as aspartate, histidine, and glutamine. Most plasma metabolites and lipids were unaffected by storage time and temperature. Based on this study, we recommend samples be collected using a single anticoagulant (preferably EDTA) with sample processing at <24 h at 4 °C.


Asunto(s)
Anticoagulantes/farmacología , Conservación de la Sangre/efectos adversos , Metaboloma , Plasma/química , Anticoagulantes/efectos adversos , Humanos , Lípidos/análisis , Plasma/efectos de los fármacos , Temperatura
5.
Sci Rep ; 9(1): 7523, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101869

RESUMEN

Genetic studies of psychiatric disorders often deal with phenotypes that are not directly measurable. Instead, researchers rely on multivariate symptom data from questionnaires and surveys like the PTSD Symptom Scale (PSS) and Beck Depression Inventory (BDI) to indirectly assess a latent phenotype of interest. Researchers subsequently collapse such multivariate questionnaire data into a univariate outcome to represent a surrogate for the latent phenotype. However, when a causal variant is only associated with a subset of collapsed symptoms, the effect will be challenging to detect using the univariate outcome. We describe a more powerful strategy for genetic association testing in this situation that jointly analyzes the original multivariate symptom data collectively using a statistical framework that compares similarity in multivariate symptom-scale data from questionnaires to similarity in common genetic variants across a gene. We use simulated data to demonstrate this strategy provides substantially increased power over standard approaches that collapse questionnaire data into a single surrogate outcome. We also illustrate our approach using GWAS data from the Grady Trauma Project and identify genes associated with BDI not identified using standard univariate techniques. The approach is computationally efficient, scales to genome-wide studies, and is applicable to correlated symptom data of arbitrary dimension.


Asunto(s)
Estudios de Asociación Genética/métodos , Trastornos Mentales/genética , Simulación por Computador , Depresión/genética , Estudios de Asociación Genética/estadística & datos numéricos , Predisposición Genética a la Enfermedad , Humanos , Modelos Genéticos , Modelos Estadísticos , Análisis Multivariante , Fenotipo , Polimorfismo de Nucleótido Simple , Trastornos por Estrés Postraumático/genética , Encuestas y Cuestionarios
6.
Science ; 357(6355): 1014-1021, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28798047

RESUMEN

Antigen-presenting cells (APCs) occupy diverse anatomical tissues, but their tissue-restricted homeostasis remains poorly understood. Here, working with mouse models of inflammation, we found that mechanistic target of rapamycin (mTOR)-dependent metabolic adaptation was required at discrete locations. mTOR was dispensable for dendritic cell (DC) homeostasis in secondary lymphoid tissues but necessary to regulate cellular metabolism and accumulation of CD103+ DCs and alveolar macrophages in lung. Moreover, while numbers of mTOR-deficient lung CD11b+ DCs were not changed, they were metabolically reprogrammed to skew allergic inflammation from eosinophilic T helper cell 2 (TH2) to neutrophilic TH17 polarity. The mechanism for this change was independent of translational control but dependent on inflammatory DCs, which produced interleukin-23 and increased fatty acid oxidation. mTOR therefore mediates metabolic adaptation of APCs in distinct tissues, influencing the immunological character of allergic inflammation.


Asunto(s)
Células Dendríticas/inmunología , Homeostasis , Hipersensibilidad/metabolismo , Inflamación/metabolismo , Pulmón/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Presentación de Antígeno , Antígenos CD/metabolismo , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Eosinófilos/inmunología , Ácidos Grasos/metabolismo , Cadenas alfa de Integrinas/metabolismo , Interleucina-23/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Oxidación-Reducción , Serina-Treonina Quinasas TOR/genética , Células Th17/inmunología , Células Th2/inmunología
7.
Artículo en Inglés | MEDLINE | ID: mdl-26702339

RESUMEN

Molecular analysis of blood samples is pivotal to clinical diagnosis and has been intensively investigated since the rise of systems biology. Recent developments have opened new opportunities to utilize transcriptomics and metabolomics for personalized and precision medicine. Efforts from human immunology have infused into this area exquisite characterizations of subpopulations of blood cells. It is now possible to infer from blood transcriptomics, with fine accuracy, the contribution of immune activation and of cell subpopulations. In parallel, high-resolution mass spectrometry has brought revolutionary analytical capability, detecting > 10,000 metabolites, together with environmental exposure, dietary intake, microbial activity, and pharmaceutical drugs. Thus, the re-examination of blood chemicals by metabolomics is in order. Transcriptomics and metabolomics can be integrated to provide a more comprehensive understanding of the human biological states. We will review these new data and methods and discuss how they can contribute to personalized medicine.

8.
Artículo en Inglés | MEDLINE | ID: mdl-26357078

RESUMEN

Extra-cellular molecules trigger a response inside the cell by initiating a signal at special membrane receptors (i.e., sources), which is then transmitted to reporters (i.e., targets) through various chains of interactions among proteins. Understanding whether such a signal can reach from membrane receptors to reporters is essential in studying the cell response to extra-cellular events. This problem is drastically complicated due to the unreliability of the interaction data. In this paper, we develop a novel method, called PReach (Probabilistic Reachability), that precisely computes the probability that a signal can reach from a given collection of receptors to a given collection of reporters when the underlying signaling network is uncertain. This is a very difficult computational problem with no known polynomial-time solution. PReach represents each uncertain interaction as a bi-variate polynomial. It transforms the reachability problem to a polynomial multiplication problem. We introduce novel polynomial collapsing operators that associate polynomial terms with possible paths between sources and targets as well as the cuts that separate sources from targets. These operators significantly shrink the number of polynomial terms and thus the running time. PReach has much better time complexity than the recent solutions for this problem. Our experimental results on real data sets demonstrate that this improvement leads to orders of magnitude of reduction in the running time over the most recent methods. Availability: All the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/PReach/.


Asunto(s)
Biología Computacional/métodos , Modelos Biológicos , Modelos Estadísticos , Transducción de Señal , Algoritmos , Programas Informáticos
9.
Bioinformatics ; 30(12): i96-104, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24932011

RESUMEN

MOTIVATION: Major disorders, such as leukemia, have been shown to alter the transcription of genes. Understanding how gene regulation is affected by such aberrations is of utmost importance. One promising strategy toward this objective is to compute whether signals can reach to the transcription factors through the transcription regulatory network (TRN). Due to the uncertainty of the regulatory interactions, this is a #P-complete problem and thus solving it for very large TRNs remains to be a challenge. RESULTS: We develop a novel and scalable method to compute the probability that a signal originating at any given set of source genes can arrive at any given set of target genes (i.e., transcription factors) when the topology of the underlying signaling network is uncertain. Our method tackles this problem for large networks while providing a provably accurate result. Our method follows a divide-and-conquer strategy. We break down the given network into a sequence of non-overlapping subnetworks such that reachability can be computed autonomously and sequentially on each subnetwork. We represent each interaction using a small polynomial. The product of these polynomials express different scenarios when a signal can or cannot reach to target genes from the source genes. We introduce polynomial collapsing operators for each subnetwork. These operators reduce the size of the resulting polynomial and thus the computational complexity dramatically. We show that our method scales to entire human regulatory networks in only seconds, while the existing methods fail beyond a few tens of genes and interactions. We demonstrate that our method can successfully characterize key reachability characteristics of the entire transcriptions regulatory networks of patients affected by eight different subtypes of leukemia, as well as those from healthy control samples. AVAILABILITY: All the datasets and code used in this article are available at bioinformatics.cise.ufl.edu/PReach/scalable.htm.


Asunto(s)
Redes Reguladoras de Genes , Algoritmos , Biología Computacional/métodos , Regulación de la Expresión Génica , Humanos , Leucemia/genética , Leucemia/metabolismo , Transducción de Señal , Factores de Transcripción/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-24334390

RESUMEN

UNLABELLED: Biological interactions are often uncertain events, that may or may not take place with some probability. This uncertainty leads to a massive number of alternative interaction topologies for each such network. The existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. In this paper, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. Using our mathematical representation, we develop a method that can accurately describe the degree distribution of such networks. We also take one more step and extend our method to accurately compute the joint-degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. Our method works quickly even for entire protein-protein interaction (PPI) networks. It also helps us find an adequate mathematical model using MLE. We perform a comparative study of node-degree and joint-degree distributions in two types of biological networks: the classical deterministic networks and the more flexible probabilistic networks. Our results confirm that power-law and log-normal models best describe degree distributions for both probabilistic and deterministic networks. Moreover, the inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected. We also show that probabilistic networks are more robust for node-degree distribution computation than the deterministic ones. AVAILABILITY: all the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/projects/probNet/.


Asunto(s)
Biología Computacional/métodos , Redes y Vías Metabólicas , Modelos Biológicos , Modelos Estadísticos , Animales , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas , Transducción de Señal
11.
Artículo en Inglés | MEDLINE | ID: mdl-23702548

RESUMEN

Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes , Redes y Vías Metabólicas , Modelos Biológicos , Modelos Estadísticos , Algoritmos , Animales , Humanos , Reproducibilidad de los Resultados
12.
J Vis ; 10(14)2010 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-21191133

RESUMEN

We hypothesize that our ability to track objects through occlusions is mediated by timely assistance from gaze in the form of "rescue saccades"-eye movements to tracked objects that are in danger of being lost due to impending occlusion. Observers tracked 2-4 target sharks (out of 9) for 20 s as they swam through a rendered 3D underwater scene. Targets were either allowed to enter into occlusions (occlusion trials) or not (no occlusion trials). Tracking accuracy with 2-3 targets was ≥ 92% regardless of target occlusion but dropped to 74% on occlusion trials with four targets (no occlusion trials remained accurate; 83%). This pattern was mirrored in the frequency of rescue saccades. Rescue saccades accompanied approximatlely 50% of the Track 2-3 target occlusions, but only 34% of the Track 4 occlusions. Their frequency also decreased with increasing distance between a target and the nearest other object, suggesting that it is the potential for target confusion that summons a rescue saccade, not occlusion itself. These findings provide evidence for a tracking system that monitors for events that might cause track loss (e.g., occlusions) and requests help from the oculomotor system to resolve these momentary crises. As the number of crises increase with the number of targets, some requests for help go unsatisfied, resulting in degraded tracking.


Asunto(s)
Atención/fisiología , Percepción de Profundidad/fisiología , Percepción de Movimiento/fisiología , Movimientos Sacádicos/fisiología , Percepción de Forma/fisiología , Humanos , Estimulación Luminosa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...