Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Toxicol In Vitro ; : 105849, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38772494

RESUMEN

Concerns over Bisphenol A (BPA) and its substitute, Bisphenol S (BPS), have led to innovative exploration due to potential adverse health effects. BPS, replacing BPA in some regions to avoid toxic impacts, remains insufficiently studied. Besides this, the organ-on-a-chip technology emerges as a transformative solution in drug discovery and chemiclas toxicity testing, minimizing costs and aligning with ethical standards by reducing reliance on animal models, by integrating diverse tissues and dynamic cell environments enhances precision in predicting organ function. Here, we employ a 3-organ-on-a-chip microfluidic device with skin, intestine, and liver cultures to assess the effects of BPA and BPS via topical and oral administration. Our evaluation focused on gene markers associated with carcinogenicity, systemic toxicity, and endocrine disruption. BPA exhibited expected absorption profiles, causing liver injury and genetic modulation in related pathways. BPS, a safer alternative, induced adverse effects on gene expression, particularly in topical absorption, with distinct absorption patterns. Our findings underscore the urgency of addressing BPA and BPS toxicity concerns, highlighting the crucial role of organ-on-a-chip technology in understanding associated health risks. The study promotes the organ-on-a-chip methodology as a valuable tool for safe drug development and disease treatments, offering a novel liver toxicity screening alternative to traditional animal tests. This contributes to advancing comprehension of the biological effects of these compounds, fostering improved safety assessments in human health.

2.
Lab Chip ; 23(24): 5092-5106, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37921576

RESUMEN

Animal testing for cosmetic ingredients and final products has been banned in Europe and is gaining legal force worldwide. However, the need for reliable testing methodologies remains for safety assessment of cosmetic ingredients. While new approach methodologies exist for many toxicological endpoints, some complex ones lack appropriate testing methods. Microphysiological systems (MPSs) have emerged as a promising tool to address this gap in pre-clinical testing, offering higher predictivity compared to animal models due to the phylogenetic distance between humans and animals. Moreover, they provide a more physiological approach than traditional in vitro testing by mimicking interconnections between different culture compartments as seen in complex organisms. This study presents a three-organ microfluidic MPS comprising skin, liver, and intestine equivalents. Combining this model with gene expression analysis, we evaluated toxicological endpoints of chemicals, demonstrating its potential for diverse applications. Our findings highlight the MPS model as a reliable and ethical method to be applied in an integrated approach for safety assessment in the cosmetic industry. It offers a promising strategy to evaluate toxicological endpoints for cosmetic ingredients and other chemicals, supporting the elimination of animal testing while ensuring consumer safety.


Asunto(s)
Seguridad de Productos para el Consumidor , Cosméticos , Humanos , Animales , Sistemas Microfisiológicos , Filogenia , Transcriptoma , Cosméticos/toxicidad , Perfilación de la Expresión Génica
3.
Nanomedicine (Lond) ; 18(7): 633-647, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37183804

RESUMEN

Nanomedicines have been investigated for delivering drugs to tumors due to their ability to accumulate in the tumor tissues. 2D in vitro cell culture has been used to investigate the antitumoral potential of nanomedicines. However, a 2D model cannot adequately mimic the in vivo tissue conditions because of the lack of cell-cell interaction, a gradient of nutrients and the expression of genes. To overcome this limitation, 3D cell culture models have emerged as promising platforms that better replicate the complexity of native tumors. For this purpose, different techniques can be used to produce 3D models, including scaffold-free, scaffold-based and microfluidic-based models. This review addresses the principles, advantages and limitations of these culture methods for evaluating the antitumoral efficacy of nanomedicines.


Asunto(s)
Neoplasias , Esferoides Celulares , Humanos , Nanomedicina , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Técnicas de Cultivo de Célula/métodos , Microfluídica
4.
Crit Rev Anal Chem ; 53(5): 1080-1093, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34818953

RESUMEN

Epirubicin (EPI) is a chemotherapeutic agent belonging to the anthracycline drug class indicated for treating several tumors. It acts by suppressing the DNA and RNA synthesis by intercalating between their base pair. However, several side effects are associated with this therapy, including cardiotoxicity and myelosuppression. Therefore, EPI delivery in nanosystems has been an interesting strategy to overcome these limitations and improve the safety and efficacy of EPI. Thus, analytical methods have been used to understand and characterize these nanosystems, including spectrophotometric, spectrofluorimetric, and chromatography. Spectrophotometric and spectrofluorimetric methods have been used to quantify EPI in less complex matrices due to their efficiency, low cost, and green chemistry character. By contrast, high-performance liquid chromatography is a suitable method for detecting EPI in more complex matrices (e.g., plasm and urine) owing to its high sensitivity. This review summarizes physicochemical and pharmacokinetic properties of EPI, its application in drug delivery nanosystems, and the analytical methods employed in its quantification in different matrices, including blood, plasm, urine, and drug delivery nanosystems.


Asunto(s)
Nanopartículas , Epirrubicina/farmacocinética , Epirrubicina/uso terapéutico , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapéutico
5.
Pharmaceutics ; 14(4)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35456655

RESUMEN

Cancer is the second most frequent cause of death worldwide, with 28.4 million new cases expected for 2040. Despite de advances in the treatment, it remains a challenge because of the tumor heterogenicity and the increase in multidrug resistance mechanisms. Thus, gene therapy has been a potential therapeutic approach owing to its ability to introduce, silence, or change the content of the human genetic code for inhibiting tumor progression, angiogenesis, and metastasis. For the proper delivery of genes to tumor cells, it requires the use of gene vectors for protecting the therapeutic gene and transporting it into cells. Among these vectors, liposomes have been the nonviral vector most used because of their low immunogenicity and low toxicity. Furthermore, this nanosystem can have its surface modified with ligands (e.g., antibodies, peptides, aptamers, folic acid, carbohydrates, and others) that can be recognized with high specificity and affinity by receptor overexpressed in tumor cells, increasing the selective delivery of genes to tumors. In this context, the present review address and discuss the main targeting ligands used to functionalize liposomes for improving gene delivery with potential application in cancer treatment.

6.
Int J Pharm ; 604: 120758, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34090991

RESUMEN

Glioma is the most common type of Central Nervous System (CNS) neoplasia and it arises from glial cells. As glial cells are formed by different types of cells, glioma can be classified according to the cells that originate it or the malignancy grade. Glioblastoma multiforme is the most common and aggressive glioma. The high lethality of this tumor is related to the difficulty in performing surgical removal, chemotherapy, and radiotherapy in the CNS. To improve glioma treatment, a wide range of chemotherapeutics have been encapsulated in nanosystems to increase their ability to overcome the blood-brain barrier (BBB) and specifically reach the tumoral cells, reducing side effects and improving drug concentration in the tumor microenvironment. Several studies have investigated nanosystems covered with targeting ligands (e.g., proteins, peptides, aptamers, folate, and glucose) to increase the ability of drugs to cross the BBB and enhance their specificity to glioma through specific recognition by receptors on BBB and glioma cells. This review addresses the main targeting ligands used in nanosystems to overcome the BBB and promote the active targeting of drugs for glioma. Furthermore, the advantages of using these molecules in glioma treatment are discussed.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Nanopartículas , Barrera Hematoencefálica , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Glioma/tratamiento farmacológico , Humanos , Microambiente Tumoral
7.
Mater Sci Eng C Mater Biol Appl ; 124: 112033, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33947535

RESUMEN

Glioblastoma multiforme (GBM) is a first primary Central Nervous System tumor with high incidence and lethality. Its treatment is hampered by the difficulty to overcome the blood-brain barrier (BBB) and by the non-specificity of chemotherapeutics to tumor cells. This study was based on the development characterization and in vitro efficacy of folate-modified TPGS transfersomes containing docetaxel (TF-DTX-FA) to improve GBM treatment. TF-DTX-FA and unmodified transfersomes (TF-DTX) were prepared through thin-film hydration followed by extrusion technique and characterized by physicochemical and in vitro studies. All formulations showed low particles sizes (below 200 nm), polydispersity index below 0.2, negative zeta potential (between -16.75 to -12.45 mV) and high encapsulation efficiency (78.72 ± 1.29% and 75.62 ± 0.05% for TF-DTX and TF-DTX-FA, respectively). Furthermore, cytotoxicity assay of TF-DTX-FA showed the high capacity of the nanocarriers to reduce the viability of U-87 MG in both 2D and 3D culture models, when compared with DTX commercial formulation and TF-DTX. In vitro cellular uptake assay indicated the selectivity of transfersomes to tumoral cells when compared to normal cells, and the higher ability of TF-DTX-FA to be internalized into 2D U-87 MG in comparison with TF-DTX (72.10 and 62.90%, respectively, after 24 h). Moreover, TF-DTX-FA showed higher permeability into 3D U-87 MG spheroid than TF-DTX, suggesting the potential FA modulation to target treatment of GBM.


Asunto(s)
Antineoplásicos , Glioblastoma , Nanopartículas , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Docetaxel/farmacología , Portadores de Fármacos , Ácido Fólico , Glioblastoma/tratamiento farmacológico , Humanos , Vitamina E
8.
J Pharm Sci ; 110(7): 2629-2636, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33848527

RESUMEN

In vitro 3D culture models have emerged in the cancer field due to their ability to recapitulate characteristics of the in vivo tumor. Herein, we described the establishment and characterization of 3D multicellular spheroids using ovarian cancer cells (SKOV-3) in co-culture with mesenchymal cells (MUC-9) or fibroblasts (CCD27-Sk). We demonstrated that SKOV-3 cells in co-culture were able to form regular and compact spheroids with diameters ranging from 300 to 400 µm and with a roundness close to 1.0 regardless of the type of stromal cell used. In the 3D culture an increase was not observed in spheroid diameter nor was there significant cell growth. What is more, the 3D co-cultures presented an up regulation of genes related to tumorigenesis, angiogenesis and metastases (MMP2, VEGFA, SNAI1, ZEB1 and VIM) when compared with 2D and 3D monoculture. As expected, both 3D cultures (mono and co-cultures) exhibited a higher Paclitaxel chemoresistance when compared to 2D condition. Although we did not observe differences in the Paclitaxel resistance between the 3D mono and co-cultures, the gene expression results indicate that the presence of mesenchymal cells and fibroblasts better recapitulate the in vivo tumor microenvironment, being able, therefore, to more accurately evaluate drug efficacy for ovarian cancer therapy.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Ováricas , Línea Celular Tumoral , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Esferoides Celulares , Microambiente Tumoral
9.
Biofabrication ; 13(3)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33592595

RESUMEN

Three-dimensional (3D) cell culture has tremendous advantages to closely mimic thein vivoarchitecture and microenvironment of healthy tissue and organs, as well as of solid tumors. Spheroids are currently the most attractive 3D model to produce uniform reproducible cell structures as well as a potential basis for engineering large tissues and complex organs. In this review we discuss, from an engineering perspective, processes to obtain uniform 3D cell spheroids, comparing dynamic and static cultures and considering aspects such as mass transfer and shear stress. In addition, computational and mathematical modeling of complex cell spheroid systems are discussed. The non-cell-adhesive hydrogel-based method and dynamic cell culture in bioreactors are focused in detail and the myriad of developed spheroid characterization techniques is presented. The main bottlenecks and weaknesses are discussed, especially regarding the analysis of morphological parameters, cell quantification and viability, gene expression profiles, metabolic behavior and high-content analysis. Finally, a vast set of applications of spheroids as tools forin vitrostudy model systems is examined, including drug screening, tissue formation, pathologies development, tissue engineering and biofabrication, 3D bioprinting and microfluidics, together with their use in high-throughput platforms.


Asunto(s)
Bioimpresión , Esferoides Celulares , Técnicas de Cultivo de Célula , Hidrogeles , Ingeniería de Tejidos
10.
Curr Gene Ther ; 21(5): 452-463, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390137

RESUMEN

Gliomas are primary brain tumors originating from glial cells, representing 30% of all Central Nervous System (CNS) neoplasia. Among them, the astrocytoma grade IV (glioblastoma multiforme) is the most common, presenting an invasive and aggressive profile, with an estimated life expectancy of about 15 months after diagnosis even after treatment with radiation, surgical resection, and chemotherapy. This poor prognosis is related to the presence of the blood-brain barrier (BBB) and multidrug resistance mechanisms that prevent the uptake and retention of chemotherapeutics inside the brain. Gene therapy has been a promising strategy to overcome these treatment limitations since it has the ability to modify the defective genetic information in tumor cells, being able to induce cellular apoptosis and silence the genes responsible for multidrug resistance. Lipidbased nanoparticles, non-viral vectors, have been investigated to deliver genes across the BBB to reach the glioma cell target. Besides, their low immunogenicity, easy production, ability to incorporate ligands to specific target cells, and capacity to carry higher size genes have made the gene therapy based on non-viral vectors a promising glioma treatment. In this context, this review addresses the most common non-viral vectors based on lipid-based nanoparticles used for glioma gene therapy, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and nanoemulsions.


Asunto(s)
Glioblastoma , Glioma , Nanopartículas , Barrera Hematoencefálica , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Terapia Genética , Glioma/tratamiento farmacológico , Glioma/terapia , Humanos , Liposomas
11.
Mater Sci Eng C Mater Biol Appl ; 105: 110038, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31546359

RESUMEN

Ovarian cancer is the most lethal gynecological cancer of female reproductive system. In order to improve the survival rate, some modifications on nanoparticles surfaces have been investigated to promote active targeting of drugs into tumor microenvironment. The aim of this study was the development and characterization of folate-modified (PN-PCX-FA) and unmodified PLGA nanoparticles (PN-PCX) containing paclitaxel for ovarian cancer treatment. Nanocarriers were produced using nanoprecipitation technique and characterized by mean particle diameter (MPD), polydispersity index (PDI), zeta potential (ZP), encapsulation efficiency (EE), DSC, FTIR, in vitro cytotoxicity and cellular uptake. PN-PCX and PN-PCX-FA showed MPD < 150 nm and PDI < 0.2 with high EE (about 90%). Cytotoxicity assays in SKOV-3 cells demonstrated the ability of both formulations to cause cellular damage. PCX encapsulated in PN-PCX-FA at 1 nM showed higher cytotoxicity than PN-PCX. Folate-modified nanoparticles showed a 3.6-fold higher cellular uptake than unmodified nanoparticles. PN-PCX-FA is a promising system to improve safety and efficacy of ovarian cancer treatment. Further in vivo studies are necessary to prove PN-PCX-FA potential.


Asunto(s)
Ácido Fólico/química , Nanopartículas/química , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Compuestos de Boro/síntesis química , Compuestos de Boro/química , Rastreo Diferencial de Calorimetría , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Endocitosis/efectos de los fármacos , Femenino , Humanos , Neoplasias Ováricas/patología , Paclitaxel/farmacología , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/síntesis química , Espectroscopía Infrarroja por Transformada de Fourier
12.
Mater Sci Eng C Mater Biol Appl ; 96: 347-355, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30606542

RESUMEN

Adenocarcinoma is the most lethal gynecologic tumor and treatment usually consists in surgery followed by chemotherapy. However, the chemotherapy benefits are eventually limited due to drug toxicity to normal tissues and cells, which cause several and harsh side effects. Paclitaxel (PCX) is the drug of first choice for ovarian cancer treatment, but it has low aqueous solubility, which reduces its bioavailability. Thus, in the commercial drug, Taxol®, PCX is solubilized in a mixture of toxic surfactants. The development of drug nanocarriers has been investigated to promote the reduction of toxic effects and increase the safety and therapeutic efficacy of PCX. The aim of this work was the development and characterization of PCX loaded nanoparticles (PNPCX) and evaluation of in vitro efficacy of developed system using adenocarcinoma cell line. The nanocarrier was successfully obtained using nanoprecipitation technique. The results showed that the PNPCX-A had a particle size distribution around 140 nm and polydispersity index smaller than 0.1, with high PCX encapsulation efficiency. The results obtained were suitable for the intravenous administration route and promotion of passive targeting in the tumor microenvironment. The in vitro cytotoxicity assays of SKOV-3 cell line demonstrated that PNPCX-A was able to release PCX and reduce cell viability. The flow cytometry assays first reported that a nanostructured system with such composition (PNPCX-A) presented a time dependent cellular uptake, showing the ability of nanocarrier to be internalized. PNPCX-A present a distinguish potential for ovarian cancer therapy optimization. In vivo studies are needed to confirm the in vitro results and provide additional data regarding safety and efficacy of ovarian cancer treatment.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Tamaño de la Partícula
13.
Pharm Res ; 35(5): 104, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29560584

RESUMEN

PURPOSE: Vitiligo is a skin disease characterized by depigmentation and the presence of white patches that are associated with the loss of melanocytes. The most common explanation for the cause of this condition is that it is an autoimmune condition. TyRP-1 is involved in melanin pigment synthesis but can also function as a melanocyte differentiation antigen. This protein plays a role in the autoimmune destruction of melanocytes, which results in the depigmentation, characteristic of this disease. In this study, we evaluated liquid crystalline nanodispersions as non-viral vectors to deliver siRNA-TyRP-1 as an alternative for topical treatment of vitiligo. METHODS: Liquid crystalline nanodispersions were obtained and characterized with respect to their physical-chemical parameters including size, PdI and zeta potential, as well as Small Angle X-ray Scattering and complexing to siRNA. The effects of the liquid crystalline nanodispersions on the cellular viability, cell uptake and levels of the knockdown target TyRP-1 were evaluated in melan-A cells after 24 h of treatment. RESULTS: The liquid crystalline nanodispersions demonstrated adequate physical-chemical parameters including nanometer size and a PdI below 0.38. These systems promoted a high rate of cell uptake and an impressive TyRP-1 target knockdown (> 80%) associated with suitable loading of TyRp-1 siRNA. CONCLUSIONS: We demonstrated that the liquid crystalline nanodispersions showed promising alternative for the topical treatment of vitiligo due to their physical parameters and ability in knockdown the target protein involved with autoimmune destruction of melanocytes.


Asunto(s)
Portadores de Fármacos/química , Glicoproteínas de Membrana/genética , Oxidorreductasas/genética , ARN Interferente Pequeño/administración & dosificación , Vitíligo/terapia , Administración Tópica , Animales , Línea Celular , Evaluación Preclínica de Medicamentos , Técnicas de Silenciamiento del Gen , Terapia Genética/métodos , Vectores Genéticos/química , Vectores Genéticos/genética , Cristales Líquidos/química , Melanocitos , Glicoproteínas de Membrana/metabolismo , Ratones , Nanopartículas/química , Oxidorreductasas/metabolismo , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA