Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bone Rep ; 21: 101771, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38725879

RESUMEN

Alzheimer's disease (AD) and osteoporosis often coexist in the elderly. Although observational studies suggest an association between these two diseases, the pathophysiologic link between AD and skeletal health has been poorly defined. We examined the skeletal phenotype of 5xFAD mice, an AD model with accelerated neuron-specific amyloid-ß accumulation causing full-blown AD phenotype by the age of 8 months. Micro-computed tomography indicated significantly lower trabecular and cortical bone parameters in 8-month-old male, but not female, 5xFAD mice than sex-matched wild-type littermates. Dynamic histomorphometry revealed reduced bone formation and increased bone resorption, and quantitative RT-PCR showed elevated skeletal RANKL gene expression in 5xFAD males. These mice also had diminished body fat percentage with unaltered lean mass, as determined by dual-energy X-ray absorptiometry (DXA), and elevated Ucp1 mRNA levels in brown adipose tissue, consistent with increased sympathetic tone, which may contribute to the osteopenia observed in 5xFAD males. Nevertheless, no significant changes could be detected between male 5xFAD and wild-type littermates regarding the serum and skeletal concentrations of norepinephrine. Thus, brain-specific amyloid-ß pathology is associated with osteopenia and appears to affect both bone formation and bone resorption. Our findings shed new light on the pathophysiologic link between Alzheimer's disease and osteoporosis.

2.
JCI Insight ; 9(9)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530370

RESUMEN

Fibroblast growth factor 23 (FGF23) production has recently been shown to increase downstream of Gαq/11-PKC signaling in osteocytes. Inactivating mutations in the gene encoding Gα11 (GNA11) cause familial hypocalciuric hypercalcemia (FHH) due to impaired calcium-sensing receptor signaling. We explored the effect of Gα11 deficiency on FGF23 production in mice with heterozygous (Gna11+/-) or homozygous (Gna11-/-) ablation of Gna11. Both Gna11+/- and Gna11-/- mice demonstrated hypercalcemia and mildly raised parathyroid hormone levels, consistent with FHH. Strikingly, these mice also displayed increased serum levels of total and intact FGF23 and hypophosphatemia. Gna11-/- mice showed augmented Fgf23 mRNA levels in the liver and heart, but not in bone or bone marrow, and also showed evidence of systemic inflammation with elevated serum IL-1ß levels. Furin gene expression was significantly increased in the Gna11-/- liver, suggesting enhanced FGF23 cleavage despite the observed rise in circulating intact FGF23 levels. Gna11-/- mice had normal renal function and reduced serum levels of glycerol-3-phosphate, excluding kidney injury as the primary cause of elevated intact FGF23 levels. Thus, Gα11 ablation caused systemic inflammation and excess serum FGF23 in mice, suggesting that patients with FHH - at least those with GNA11 mutations - may be at risk for these complications.


Asunto(s)
Modelos Animales de Enfermedad , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Hipercalcemia , Ratones Noqueados , Animales , Femenino , Masculino , Ratones , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Hipercalcemia/genética , Hipercalcemia/congénito , Hipercalcemia/sangre , Hipercalcemia/metabolismo , Hipofosfatemia/genética , Hipofosfatemia/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/sangre , Hígado/metabolismo , Hormona Paratiroidea/sangre , Hormona Paratiroidea/metabolismo , Transducción de Señal
3.
J Neuroinflammation ; 20(1): 142, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316834

RESUMEN

OBJECTIVES: Microglial activation is critical for modulating the neuroinflammatory process and the pathological progression of neurodegenerative diseases, such as Alzheimer's disease (AD). Microglia are involved in forming barriers around extracellular neuritic plaques and the phagocytosis of ß-amyloid peptide (Aß). In this study, we tested the hypothesis that periodontal disease (PD) as a source of infection alters inflammatory activation and Aß phagocytosis by the microglial cells. METHODS: Experimental PD was induced using ligatures in C57BL/6 mice for 1, 10, 20, and 30 days to assess the progression of PD. Animals without ligatures were used as controls. Maxillary bone loss and local periodontal tissue inflammation associated with the development of PD were confirmed by morphometric bone analysis and cytokine expression, respectively. The frequency and the total number of activated microglia (CD45+ CD11b+ MHCII+) in the brain were analyzed by flow cytometry. Mouse microglial cells (1 × 105) were incubated with heat-inactivated bacterial biofilm isolated from the ligatures retrieved from the teeth or with Klebsiella variicola, a relevant PD-associated bacteria in mice. Expression of pro-inflammatory cytokines, toll-like receptors (TLR), and receptors for phagocytosis was measured by quantitative PCR. The phagocytic capacity of microglia to uptake ß-amyloid was analyzed by flow cytometry. RESULTS: Ligature placement caused progressive periodontal disease and bone resorption that was already significant on day 1 post-ligation (p < 0.05) and continued to increase until day 30 (p < 0.0001). The severity of periodontal disease increased the frequency of activated microglia in the brains on day 30 by 36%. In parallel, heat-inactivated PD-associated total bacteria and Klebsiella variicola increased the expression of TNFα, IL-1ß, IL-6, TLR2, and TLR9 in microglial cells (1.6-, 83-, 3.2-, 1.5-, 1.5-fold, respectively p < 0.01). Incubation of microglia with Klebsiella variicola increased the Aß-phagocytosis by 394% and the expression of the phagocytic receptor MSR1 by 33-fold compared to the non-activated cells (p < 0.0001). CONCLUSIONS: We showed that inducing PD in mice results in microglia activation in vivo and that PD-associated bacteria directly promote a pro-inflammatory and phagocytic phenotype in microglia. These results support a direct role of PD-associated pathogens in neuroinflammation.


Asunto(s)
Microglía , Enfermedades Periodontales , Animales , Ratones , Ratones Endogámicos C57BL , Klebsiella , Péptidos beta-Amiloides
4.
Neurotoxicology ; 96: 197-206, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37160207

RESUMEN

Gulf War Illness (GWI) is an unrelenting multi-symptom illness with chronic central nervous system and peripheral pathology affecting veterans from the 1991 Gulf War and for which effective treatment is lacking. An increasing number of studies indicate that persistent neuroinflammation is likely the underlying cause of cognitive and mood dysfunction that affects veterans with GWI. We have previously reported that fingolimod, a drug approved for the treatment of relapsing-remitting multiple sclerosis, decreases neuroinflammation and improves cognition in a mouse model of Alzheimer's disease. In this study, we investigated the effect of fingolimod treatment on cognition and neuroinflammation in a mouse model of GWI. We exposed C57BL/6 J male mice to GWI-related chemicals pyridostigmine bromide, DEET, and permethrin, and to mild restraint stress for 28 days (GWI mice). Control mice were exposed to the chemicals' vehicle only. Starting 3 months post-exposure, half of the GWI mice and control mice were orally treated with fingolimod (1 mg/kg/day) for 1 month, and the other half were left untreated. Decreased memory on the Morris water maze test was detected in GWI mice compared to control mice and was reversed by fingolimod treatment. Immunohistochemical analysis of brain sections with antibodies to Iba1 and GFAP revealed that GWI mice had increased microglia activation in the hippocampal dentate gyrus, but no difference in reactive astrocytes was detected. The increased activation of microglia in GWI mice was decreased to the level in control mice by treatment with fingolimod. No effect of fingolimod treatment on gliosis in control mice was detected. To explore the signaling pathways by which decreased memory and increased neuroinflammation in GWI may be protected by fingolimod, we investigated the involvement of the inflammatory signaling pathways of protein kinase R (PKR) in the cerebral cortex of these mice. We found increased phosphorylation of PKR in the brain of GWI mice compared to controls, as well as increased phosphorylation of its most recognized downstream effectors: the α subunit of eukaryotic initiation factor 2 (eIF2α), IκB kinase (IKK), and the p65 subunit of nuclear factor-κB (NFκB-p65). Furthermore, we found that the increased phosphorylation level of these three proteins were suppressed in GWI mice treated with fingolimod. These results suggest that activation of PKR and NFκB signaling may be important for the regulation of cognition and neuroinflammation in the GWI condition and that fingolimod, a drug already approved for human use, may be a potential candidate for the treatment of GWI.


Asunto(s)
Clorhidrato de Fingolimod , Síndrome del Golfo Pérsico , Animales , Masculino , Ratones , Amnesia/metabolismo , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod/uso terapéutico , Clorhidrato de Fingolimod/metabolismo , Clorhidrato de Fingolimod/farmacología , Guerra del Golfo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Ratones Endogámicos C57BL , Microglía , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/tratamiento farmacológico , Síndrome del Golfo Pérsico/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología , Proteínas Quinasas/uso terapéutico , Bromuro de Piridostigmina/uso terapéutico , Bromuro de Piridostigmina/farmacología
5.
Brain Res ; 1799: 148171, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410428

RESUMEN

Sphingolipid-1-phosphate (S1P) signaling through the activation S1P receptors (S1PRs) plays critical roles in cellular events in the brain. Aberrant S1P metabolism has been identified in the brains of Alzheimer's disease (AD) patients. Our recent studies have shown that treatment with fingolimod, an analog of sphingosine, provides neuroprotective effects in five familiar Alzheimer disease (5xFAD) transgenic mice, resulting in the reduction of amyloid-ß (Aß) neurotoxicity, inhibition of activation of microglia and astrocytes, increased hippocampal neurogenesis, and improved learning and memory. However, the pathways by which dysfunctional S1P and S1PR signaling may associate with the development of AD-like pathology remain unknown. In this study, we investigated the alteration of signaling of S1P/S1P receptor 1 (S1PR1), the most abundant S1PR subtype in the brain, in the cortex of 5xFAD transgenic mice at 3, 8, and 14 months of age. Compared to non-transgenic wildtype (WT) littermates, we found significant decreased levels of sphingosine kinases (SphKs), increased S1P lyase (S1PL), and increased S1PR1 in 8- and 14-month-old, but not in 3-month-old 5xFAD mice. Furthermore, we detected increased activation of the S1PR1 downstream pathway of Akt/mTor/Tau signaling in aging 5xFAD mice. Treatment with fingolimod from 1 to 8 months of age reversed the levels of SphKs, S1PL, and furthermore, those of S1PR1 and its downstream pathway of Akt/mTor/Tau signaling. Together the data reveal that dysregulation of S1P and S1PR signaling may associate with the development of AD-like pathology through Akt/mTor/Tau signaling.


Asunto(s)
Enfermedad de Alzheimer , Esfingosina , Ratones , Animales , Clorhidrato de Fingolimod/farmacología , Enfermedad de Alzheimer/metabolismo , Receptores de Esfingosina-1-Fosfato , Proteínas Proto-Oncogénicas c-akt , Lisofosfolípidos/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Serina-Treonina Quinasas TOR
6.
Sci Rep ; 10(1): 18561, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122702

RESUMEN

Periodontal disease (PD) has been suggested to be a risk factor for Alzheimer's disease (AD). We tested the impact of ligature-induced PD on 5xFAD mice and WT littermates. At baseline, 5xFAD mice presented significant alveolar bone loss compared to WT mice. After the induction of PD, both WT and 5xFAD mice experienced alveolar bone loss. PD increased the level of Iba1-immunostained microglia in WT mice. In 5xFAD mice, PD increased the level of insoluble Aß42. The increased level in Iba1 immunostaining that parallels the accumulation of Aß in 5xFAD mice was not affected by PD except for a decrease in the dentate gyrus. Analysis of double-label fluorescent images showed a decline in Iba1 in the proximity of Aß plaques in 5xFAD mice with PD compared to those without PD suggesting a PD-induced decrease in plaque-associated microglia (PAM). PD reduced IL-6, MCP-1, GM-CSF, and IFN-γ in brains of WT mice and reduced IL-10 in 5xFAD mice. The data demonstrated that PD increases neuroinflammation in WT mice and disrupts the neuroinflammatory response in 5xFAD mice and suggest that microglia is central to the association between PD and AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Microglía/patología , Periodontitis/patología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Inflamación/metabolismo , Inflamación/patología , Interferón gamma/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Microglía/metabolismo , Periodontitis/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología
7.
Sci Rep ; 9(1): 10972, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358793

RESUMEN

Lipid metabolism is abnormal in Alzheimer's disease (AD) brain leading to ceramide and sphingosine accumulation and reduced levels of brain sphingosine-1-phosphate (S1P). We hypothesize that changes in S1P signaling are central to the inflammatory and immune-pathogenesis of AD and the therapeutic benefits of fingolimod, a structural analog of sphingosine that is FDA approved for the treatment of multiple sclerosis. We recently reported that the neuroprotective effects of fingolimod in 5xFAD transgenic AD mice treated from 1-3 months of age were greater at 1 mg/kg/day than at 5 mg/kg/day. Here we performed a dose-response study using fingolimod from 0.03 to 1 mg/kg/day in 5xFAD mice treated from 1-8 months of age. At 1 mg/kg/day, fingolimod decreased both peripheral blood lymphocyte counts and brain Aß levels, but at the lowest dose tested (0.03 mg/kg/day), we detected improved memory, decreased activation of brain microglia and astrocytes, and restored hippocampal levels of GABA and glycerophosphocholine with no effect on circulating lymphocyte counts. These findings suggests that, unlike the case in multiple sclerosis, fingolimod may potentially have therapeutic benefits in AD at low doses that do not affect peripheral lymphocyte function.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Encéfalo/efectos de los fármacos , Reposicionamiento de Medicamentos , Clorhidrato de Fingolimod/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Clorhidrato de Fingolimod/uso terapéutico , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/patología , Ácido gamma-Aminobutírico/metabolismo
8.
Brain Res ; 1413: 84-97, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21840511

RESUMEN

Choline is a vital nutrient needed during early development for both humans and rodents. Severe dietary choline deficiency during pregnancy leads to birth defects, while more limited deficiency during mid- to late pregnancy causes deficits in hippocampal plasticity in adult rodent offspring that are accompanied by cognitive deficits only when task demands are high. Because prenatal choline supplementation confers neuroprotection of the adult hippocampus against a variety of neural insults and aids memory, we hypothesized that prenatal choline deficiency may enhance vulnerability to neural injury. To examine this, adult offspring of rat dams either fed a control diet (CON) or one deficient in choline (DEF) during embryonic days 12-17 were given multiple injections (i.p.) of saline (control) or kainic acid to induce seizures and were euthanized 16 days later. Perhaps somewhat surprisingly, DEF rats were not more susceptible to seizure induction and showed similar levels of seizure-induced hippocampal histopathology, GAD expression loss, upregulated hippocampal GFAP and growth factor expression, and increased dentate cell and neuronal proliferation as that seen in CON rats. Although prenatal choline deficiency compromises adult hippocampal plasticity in the intact brain, it does not appear to exacerbate the neuropathological response to seizures in the adult hippocampus at least shortly after excitotoxic injury.


Asunto(s)
Deficiencia de Colina/metabolismo , Colina/administración & dosificación , Hipocampo/metabolismo , Ácido Kaínico/toxicidad , Efectos Tardíos de la Exposición Prenatal/metabolismo , Convulsiones/metabolismo , Factores de Edad , Animales , Deficiencia de Colina/inducido químicamente , Susceptibilidad a Enfermedades , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Masculino , Fármacos Neuroprotectores/administración & dosificación , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Sprague-Dawley , Convulsiones/inducido químicamente
9.
Neuroendocrinology ; 94(1): 49-57, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21311177

RESUMEN

BACKGROUND/AIMS: The steroid hormones, including estradiol (E) and progesterone, act in the brain to regulate female reproductive behavior and physiology. These hormones mediate many of their biological effects by binding to their respective intracellular receptors. The receptors for estrogens (ER) and progestins (PR) interact with nuclear receptor coactivators to initiate transcription of steroid-responsive genes. Work from our laboratory and others reveals that nuclear receptor coactivators, including steroid receptor coactivator-1 (SRC-1) and SRC-2, function in brain to modulate ER-mediated induction of the PR gene and hormone-dependent behaviors. In order for steroid receptors and coactivators to function together, both must be expressed in the same cells. METHODS: Triple-label immunofluorescence was used to determine if E-induced PR cells also express SRC-1 or SRC-2 in reproductively relevant brain regions of the female mouse. RESULTS: The majority of E-induced PR cells in the medial preoptic area (61%), ventromedial nucleus of the hypothalamus (63%) and arcuate nucleus (76%) coexpressed both SRC-1 and SRC-2. A smaller proportion of PR cells expressed either SRC-1 or SRC-2, while a few PR cells expressed neither coactivator. In addition, compared to control animals, 17ß-estradiol benzoate (EB) treatment increased SRC-1 levels in the arcuate nucleus, but not the medial preoptic area or the ventromedial nucleus of the hypothalamus. EB did not alter SRC-2 expression in any of the three brain regions analyzed. CONCLUSIONS: Taken together, the present findings identify a population of cells in which steroid receptors and nuclear receptor coactivators may interact to modulate steroid sensitivity in brain and regulate hormone-dependent behaviors in female mice. Given that cell culture studies reveal that SRC-1 and SRC-2 can mediate distinct steroid-signaling pathways, the present findings suggest that steroids can produce a variety of complex responses in these specialized brain cells.


Asunto(s)
Encéfalo/metabolismo , Estradiol/metabolismo , Coactivador 1 de Receptor Nuclear/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Encéfalo/efectos de los fármacos , Estradiol/farmacología , Femenino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Núcleo Hipotalámico Ventromedial/efectos de los fármacos , Núcleo Hipotalámico Ventromedial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA