Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Med Phys ; 51(5): 3658-3664, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507277

RESUMEN

BACKGROUND: Failure mode and effects analysis (FMEA), which is an effective tool for error prevention, has garnered considerable attention in radiotherapy. FMEA can be performed individually, by a group or committee, and online. PURPOSE: To meet the needs of FMEA for various purposes and improve its accessibility, we developed a simple, self-contained, and versatile web-based FMEA risk analysis worksheet. METHODS: We developed an FMEA worksheet using Google products, such as Google Sheets, Google Forms, and Google Apps Script. The main sheet was created in Google Sheets and contained elements necessary for performing FMEA by a single person. Automated tasks were implemented using Apps Script to facilitate multiperson FMEA; these functions were built into buttons located on the main sheet. RESULTS: The usability of the FMEA worksheet was tested in several situations. The worksheet was feasible for individual, multiperson, seminar, meeting, and online purposes. Simultaneous online editing, automated survey form creation, automatic analysis, and the ability to respond to the form from multiple devices, including mobile phones, were particularly useful for online and multiperson FMEA. Automation enabled through Google Apps Script reduced the FMEA workload. CONCLUSIONS: The FMEA worksheet is versatile and has a seamless workflow that promotes collaborative work for safety.


Asunto(s)
Análisis de Modo y Efecto de Fallas en la Atención de la Salud , Japón , Humanos , Física Sanitaria , Internet , Universidades , Pueblos del Este de Asia
2.
Med Dosim ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38368182

RESUMEN

Previous plan competitions have largely focused on dose metric assessments. However, whether the submitted plans were realistic and reasonable from a quality assurance (QA) perspective remains unclear. This study aimed to investigate the relationship between aperture-based plan complexity metrics (PCM) in volumetric modulated arc therapy (VMAT) competition plans and clinical treatment plans verified through patient-specific QA (PSQA). In addition, the association of PCMs with plan quality was examined. A head and neck (HN) plan competition was held for Japanese institutions from June 2019 to July 2019, in which 210 competition plans were submitted. Dose distribution quality was quantified based on dose-volume histogram (DVH) metrics by calculating the dose distribution plan score (DDPS). Differences in PCMs between the two VMAT treatment plan groups (HN plan competitions held in Japan and clinically accepted HN VMAT plans through PSQA) were investigated. The mean (± standard deviation) DDPS for the 98 HN competition plans was 158.5 ± 20.6 (maximum DDPS: 200). DDPS showed a weak correlation with PCMs with a maximum r of 0.45 for monitor unit (MU); its correlation with some PCMs was "very weak." Significant differences were found in some PCMs between plans with the highest 20% DDPSs and the remaining plans. The clinical VMAT and competition plans revealed similar distributions for some PCMs. Deviations in PCMs for the two groups were comparable, indicating considerable variability among planners regarding planning skills. The plan complexity for HN VMAT competition plans increased for high-quality plans, as shown by the dose distribution. Direct comparison of PCMs between competition plans and clinically accepted plans showed that the submitted HN VMAT competition plans were realistic and reasonable from the QA perspective. This evaluation may provide a set of criteria for evaluating plan quality in plan competitions.

3.
J Radiat Res ; 65(1): 127-135, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37996096

RESUMEN

The purpose of this study was to investigate the status of remote-radiotherapy treatment planning (RRTP) in Japan through a nationwide questionnaire survey. The survey was conducted between 29 June and 4 August 2022, at 834 facilities in Japan that were equipped with linear accelerators. The survey utilized a Google form that comprised 96 questions on facility information, information about the respondent, utilization of RRTP between facilities, usage for telework and the inclination to implement RRTPs in the respondent's facility. The survey analyzed the utilization of the RRTP system in four distinct implementation types: (i) utilization as a supportive facility, (ii) utilization as a treatment facility, (iii) utilization as a teleworker outside of the facility and (iv) utilization as a teleworker within the facility. The survey response rate was 58.4% (487 facilities responded). Among the facilities that responded, 10% (51 facilities) were implementing RRTP. 13 served as supportive facilities, 23 as treatment facilities, 17 as teleworkers outside of the facility and 5 as teleworkers within the facility. In terms of system usage between supportive and treatment facilities, 70-80% of the participants utilized the system for emergencies or as overtime work for external workers. A substantial number of facilities (38.8%) reported that they were unfamiliar with RRTP implementation. The survey showed that RRTP utilization in Japan is still limited, with a significant number of facilities unfamiliar with the technology. The study highlights the need for greater understanding and education about RRTP and financial funds of economical compensation.


Asunto(s)
Oncología por Radiación , Humanos , Japón , Encuestas y Cuestionarios , Aceleradores de Partículas
4.
J Radiat Res ; 65(2): 159-167, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38151953

RESUMEN

Previous studies have primarily focused on quality of imaging in radiotherapy planning computed tomography (RTCT), with few investigations on imaging doses. To our knowledge, this is the first study aimed to investigate the imaging dose in RTCT to determine baseline data for establishing national diagnostic reference levels (DRLs) in Japanese institutions. A survey questionnaire was sent to domestic RT institutions between 10 October and 16 December 2021. The questionnaire items were volume computed tomography dose index (CTDIvol), dose-length product (DLP), and acquisition parameters, including use of auto exposure image control (AEC) or image-improving reconstruction option (IIRO) for brain stereotactic irradiation (brain STI), head and neck (HN) intensity-modulated radiotherapy (IMRT), lung stereotactic body radiotherapy (lung SBRT), breast-conserving radiotherapy (breast RT), and prostate IMRT protocols. Details on the use of motion-management techniques for lung SBRT were collected. Consequently, we collected 328 responses. The 75th percentiles of CTDIvol were 92, 33, 86, 23, and 32 mGy and those of DLP were 2805, 1301, 2416, 930, and 1158 mGy·cm for brain STI, HN IMRT, lung SBRT, breast RT, and prostate IMRT, respectively. CTDIvol and DLP values in institutions that used AEC or IIRO were lower than those without use for almost all sites. The 75th percentiles of DLP in each treatment technique for lung SBRT were 2541, 2034, 2336, and 2730 mGy·cm for free breathing, breath holding, gating technique, and real-time tumor tracking technique, respectively. Our data will help in establishing DRLs for RTCT protocols, thus reducing imaging doses in Japan.


Asunto(s)
Encéfalo , Radiocirugia , Tomografía Computarizada por Rayos X , Humanos , Masculino , Japón , Dosis de Radiación , Valores de Referencia , Encuestas y Cuestionarios , Tomografía Computarizada por Rayos X/métodos , Encéfalo/efectos de la radiación
5.
Med Phys ; 51(3): 1571-1582, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38112216

RESUMEN

BACKGROUND: Inadequate computed tomography (CT) number calibration curves affect dose calculation accuracy. Although CT number calibration curves registered in treatment planning systems (TPSs) should be consistent with human tissues, it is unclear whether adequate CT number calibration is performed because CT number calibration curves have not been assessed for various types of CT number calibration phantoms and TPSs. PURPOSE: The purpose of this study was to investigate CT number calibration curves for mass density (ρ) and relative electron density (ρe ). METHODS: A CT number calibration audit phantom was sent to 24 Japanese photon therapy institutes from the evaluating institute and scanned using their individual clinical CT scan protocols. The CT images of the audit phantom and institute-specific CT number calibration curves were submitted to the evaluating institute for analyzing the calibration curves registered in the TPSs at the participating institutes. The institute-specific CT number calibration curves were created using commercial phantom (Gammex, Gammex Inc., Middleton, WI, USA) or CIRS phantom (Computerized Imaging Reference Systems, Inc., Norfolk, VA, USA)). At the evaluating institute, theoretical CT number calibration curves were created using a stoichiometric CT number calibration method based on the CT image, and the institute-specific CT number calibration curves were compared with the theoretical calibration curve. Differences in ρ and ρe over the multiple points on the curve (Δρm and Δρe,m , respectively) were calculated for each CT number, categorized for each phantom vendor and TPS, and evaluated for three tissue types: lung, soft tissues, and bones. In particular, the CT-ρ calibration curves for Tomotherapy TPSs (ACCURAY, Sunnyvale, CA, USA) were categorized separately from the Gammex CT-ρ calibration curves because the available tissue-equivalent materials (TEMs) were limited by the manufacturer recommendations. In addition, the differences in ρ and ρe for the specific TEMs (ΔρTEM and Δρe,TEM , respectively) were calculated by subtracting the ρ or ρe of the TEMs from the theoretical CT-ρ or CT-ρe calibration curve. RESULTS: The mean ± standard deviation (SD) of Δρm and Δρe,m for the Gammex phantom were -1.1 ± 1.2 g/cm3 and -0.2 ± 1.1, -0.3 ± 0.9 g/cm3 and 0.8 ± 1.3, and -0.9 ± 1.3 g/cm3 and 1.0 ± 1.5 for lung, soft tissues, and bones, respectively. The mean ± SD of Δρm and Δρe,m for the CIRS phantom were 0.3 ± 0.8 g/cm3 and 0.9 ± 0.9, 0.6 ± 0.6 g/cm3 and 1.4 ± 0.8, and 0.2 ± 0.5 g/cm3 and 1.6 ± 0.5 for lung, soft tissues, and bones, respectively. The mean ± SD of Δρm for Tomotherapy TPSs was 2.1 ± 1.4 g/cm3 for soft tissues, which is larger than those for other TPSs. The mean ± SD of Δρe,TEM for the Gammex brain phantom (BRN-SR2) was -1.8 ± 0.4, implying that the tissue equivalency of the BRN-SR2 plug was slightly inferior to that of other plugs. CONCLUSIONS: Latent deviations between human tissues and TEMs were found by comparing the CT number calibration curves of the various institutes.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X , Humanos , Calibración , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Cabeza , Huesos , Fantasmas de Imagen
6.
J Radiat Res ; 64(6): 911-925, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37816672

RESUMEN

Several staffing models are used to determine the required medical physics staffing, including radiotherapy technologists, of radiation oncology departments. However, since Japanese facilities tend to be smaller in scale than foreign ones, those models might not apply to Japan. Therefore, in this study, we surveyed workloads in Japan to estimate the optimal medical physics staffing in external beam radiotherapy. A total of 837 facilities were surveyed to collect information regarding radiotherapy techniques and medical physics specialists (RTMPs). The survey covered facility information, staffing, patient volume, equipment volume, workload and quality assurance (QA) status. Full-time equivalent (FTE) factors were estimated from the workload and compared with several models. Responses were received from 579 facilities (69.2%). The median annual patient volume was 369 at designated cancer care hospitals (DCCHs) and 252 across all facilities. In addition, the median FTE of RTMPs was 4.6 at DCCHs and 3.0 at all sites, and the average QA implementation rate for radiotherapy equipment was 69.4%. Furthermore, advanced treatment technologies have increased workloads, particularly in computed tomography simulations and treatment planning tasks. Compared to published models, larger facilities (over 500 annual patients) had a shortage of medical physics staff. In very small facilities (about 140 annual patients), the medical physics staffing requirement was estimated to be 0.5 FTE, implying that employing a full-time medical physicist would be inefficient. However, ensuring the quality of radiotherapy is an important issue, given the limited number of RTMPs. Our study provides insights into optimizing staffing and resource allocation in radiotherapy departments.


Asunto(s)
Neoplasias , Oncología por Radiación , Humanos , Carga de Trabajo , Japón , Encuestas y Cuestionarios , Neoplasias/radioterapia , Física
7.
Radiol Phys Technol ; 16(4): 431-442, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37668931

RESUMEN

This study aimed to investigate the educational environment of radiotherapy technology and medical physics specialists (RTMP) in Japan. We conducted a nationwide questionnaire survey in radiotherapy institutions between June and August 2022. Participants were asked questions regarding the educational system, perspectives on updating RTMP's skills and qualifications, and perspectives on higher education for RTMP at radiotherapy institutions. The results were then analyzed in detail according to three factors: whether the hospital was designed for cancer care, whether it was a Japanese Society for Radiation Oncology (JASTRO)-accredited hospital, and whether it was an intensity-modulated radiation therapy charged hospital. Responses were obtained from 579 (69%) nationwide radiation therapy institutions. For non-qualified RTMP, 10% of the institutions had their own educational systems, only 17% of institutions provided on-the-job training, and 84% of institutions encouraged participation in educational lectures and workshops in academic societies. However, for qualified RTMP, 3.0% of institutions had their own educational systems, only 8.9% of the institutions provided on-the-job training, and 83% encouraged participation in academic conferences and workshops. Less than 1% of the facilities offered salary increases for certification, whereas 8.2% offered consideration for occupational promotion. Regarding the educational environment, JASTRO-accredited hospitals were better than general hospitals. Few institutions have their own educational systems for qualified and non-qualified RTMP, but they encourage them to attend educational seminars and conferences. It is desirable to provide systematic education and training by academic and professional organizations to maintain the skills of individuals.


Asunto(s)
Oncología por Radiación , Humanos , Japón , Física , Tecnología , Encuestas y Cuestionarios
8.
J Appl Clin Med Phys ; 24(6): e14040, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37191875

RESUMEN

PURPOSE: The Medical Physics Working Group of the Radiation Therapy Study Group at the Japan Clinical Oncology Group is currently developing a virtual audit system for intensity-modulated radiation therapy dosimetry credentialing. The target dosimeters include films and array detectors, such as ArcCHECK (Sun Nuclear Corporation, Melbourne, Florida, USA) and Delta4 (ScandiDos, Uppsala, Sweden). This pilot study investigated the feasibility of our virtual audit system using previously acquired data. METHODS: We analyzed 46 films (32 and 14 in the axial and coronal planes, respectively) from 29 institutions. Global gamma analysis between measured and planned dose distributions used the following settings: 3%/3 mm criteria (the dose denominator was 2 Gy), 30% threshold dose, no scaling of the datasets, and 90% tolerance level. In addition, 21 datasets from nine institutions were obtained for array evaluation. Five institutions used ArcCHECK, while the others used Delta4. Global gamma analysis was performed with 3%/2 mm criteria (the dose denominator was the maximum calculated dose), 10% threshold dose, and 95% tolerance level. The film calibration and gamma analysis were conducted with in-house software developed using Python (version 3.9.2). RESULTS: The means ± standard deviations of the gamma passing rates were 99.4 ± 1.5% (range, 92.8%-100%) and 99.2 ± 1.0% (range, 97.0%-100%) in the film and array evaluations, respectively. CONCLUSION: This pilot study demonstrated the feasibility of virtual audits. The proposed virtual audit system will contribute to more efficient, cheaper, and more rapid trial credentialing than on-site and postal audits; however, the limitations should be considered when operating our virtual audit system.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Proyectos Piloto , Japón , Habilitación Profesional , Radiometría , Dosificación Radioterapéutica , Oncología Médica , Fantasmas de Imagen
9.
Radiother Oncol ; 179: 109452, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36572282

RESUMEN

BACKGROUND AND PURPOSE: Quality indicators (QIs) for radiotherapy have been proposed by several groups, but no study has been conducted to correlate the implementation of indicators specific to patient safety over the course of the clinical process with an institution's background. An initial large-scale survey was conducted to understand the implementation status of QIs established for quality assurance and patient safety in radiotherapy and the relationship between implementation status and an institutions' background. MATERIALS AND METHOD: Overall, 68 QIs that were established by this research team after a pilot survey were used to assess structures and processes for quality assurance and patient safety. Data on the implementation of QIs and the institutions' backgrounds were obtained from designated cancer care hospitals in Japan. RESULTS: Overall, 284 institutions (72 %) responded and had a median QI achievement rate of 60.8 %. QIs with low implementation rates, such as the implementation of an error reporting system and establishment of a quality assurance department, were identified. The QI achievement rate and scale of the institution were positively correlated, and the achievement rate of all QIs was significantly higher (p < 0.001) in institutions capable of advanced treatments, such as intensity-modulated radiotherapy, and those with a quality assurance department. CONCLUSION: A large-scale survey on QIs revealed their implementation and relationship with a facility's background. QIs that require improvement were identified, and that these QIs might be effective in providing advanced medical care to many patients.


Asunto(s)
Indicadores de Calidad de la Atención de Salud , Radioterapia de Intensidad Modulada , Humanos , Seguridad del Paciente , Hospitales , Japón
10.
J Radiat Res ; 64(1): 162-170, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36403118

RESUMEN

We compared the dose distributions of carbon-ion pencil beam scanning (C-PBS), proton pencil beam scanning (P-PBS) and Volumetric Modulated Arc Therapy (VMAT) for locally recurrent rectal cancer. The C-PBS treatment planning computed tomography (CT) data sets of 10 locally recurrent rectal cancer cases were randomly selected. Three treatment plans were created using identical prescribed doses. The beam angles for C-PBS and P-PBS were identical. Dosimetry, including the dose received by 95% of the planning target volume (PTV) (D95%), dose to the 2 cc receiving the maximum dose (D2cc), organ at risk (OAR) volume receiving > 15Gy (V15) and > 30Gy (V30), was evaluated. Statistical significance was assessed using the Wilcoxon signed-rank test. Mean PTV-D95% values were > 95% of the volume for P-PBS and C-PBS, whereas that for VMAT was 94.3%. However, PTV-D95% values in P-PBS and VMAT were < 95% in five and two cases, respectively, due to the OAR dose reduction. V30 and V15 to the rectum/intestine for C-PBS (V30 = 4.2 ± 3.2 cc, V15 = 13.8 ± 10.6 cc) and P-PBS (V30 = 7.3 ± 5.6 cc, V15 = 21.3 ± 13.5 cc) were significantly lower than those for VMAT (V30 = 17.1 ± 10.6 cc, V15 = 55.2 ± 28.6 cc). Bladder-V30 values with P-PBS/C-PBS (3.9 ± 4.8 Gy(RBE)/3.0 ± 4.0 Gy(RBE)) were significantly lower than those with VMAT (7.9 ± 8.1 Gy). C-PBS provided superior dose conformation and lower OAR doses compared with P-PBS and VMAT. C-PBS may be the best choice for cases in which VMAT and P-PBS cannot satisfy dose constraints. C-PBS could be another choice for cases in which VMAT and P-PBS cannot satisfy dose constraints, thereby avoiding surgical resection.


Asunto(s)
Radioterapia de Intensidad Modulada , Neoplasias del Recto , Humanos , Protones , Recto , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Recurrencia Local de Neoplasia/radioterapia , Neoplasias del Recto/radioterapia , Enfermedad Crónica
11.
Igaku Butsuri ; 43(4): 107-124, 2023.
Artículo en Japonés | MEDLINE | ID: mdl-38417889

RESUMEN

In recent years, MR-Linac, a radiotherapy linear accelerator (linac) equipped with magnetic resonance (MR) imaging, has been deployed in clinical facilities across Japan. Because of the magnetic field of MR-Linac, which can affect the dose distributions and dose response of ionization chambers, conventional reference dosimetry for absorbed dose to water using an ionization chamber becomes impractical. Consequently, the magnetic field effect should be considered in the reference dosimetry for MR-Linac. Although numerous studies have delved into this matter and several magnetic field correction methods have been proposed to extend the conventional formalism, a practical protocol for reference dosimetry for MR-Linac remains elusive.The purpose of this review are as follows: (i) to summarize and evaluate literature and existing datasets as well as identify any gaps that highlight areas for the future research on this topic; (ii) to elucidate dosimetric challenges associated with ionization chamber dosimetry in magnetic fields; and (iii) to propose a formalism for reference dosimetry for MR-Linac based on available literature and datasets. This review focuses on studies based on commercially available MR-Linacs and datasets, specifically tailored for reference-class cylindrical ion chambers.


Asunto(s)
Aceleradores de Partículas , Radiometría , Radiometría/métodos , Imagen por Resonancia Magnética/métodos , Campos Magnéticos , Agua
12.
Igaku Butsuri ; 42(3): 123-142, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-36184423

RESUMEN

The questionnaire survey was conducted in 2020 to investigate the working conditions of qualified medical physicists in Japan. We developed a web-based system for administering the questionnaire and surveyed 1,228 qualified medical physicists. The number of received responses was 405. We summarized the results of the survey by job category. The obtained results showed that most of the people working as certified medical physicists met the following conditions: (1) position of healthcare occupation, (2) direct supervisor is a medical doctor or a medical physicist, (3) licensed or passed an examination for a Class I Radiation Protection Supervisor, (4) without the license of professional radiotherapy technologist, (5) master's or doctor's degree, (6) being assigned to the section that is different from the radiological technologist section. The average annual salary was approximately 600,000 yen higher for those employed as medical physicists than for those employed as radiotherapy technologists. The percentage of work performed by a certified medical physicist in radiation therapy greatly varies depending on whether the physicist is dedicated to treatment planning and equipment quality control. Alternatively, the proportion of the true duties of medical physicists in charge of radiation therapy, as considered by qualified medical physicists in radiation therapy, was the same regardless of whether they were working full-time or not. The results of this survey updated the working status of certified medical physicists in Japan. We will continue to conduct the survey periodically and update the information to contribute to the improvement of the working conditions of medical physicists and policy recommendations.


Asunto(s)
Oncología por Radiación , Protección Radiológica , Humanos , Japón , Control de Calidad , Encuestas y Cuestionarios
13.
J Radiat Res ; 63(5): 730-740, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35946325

RESUMEN

The first magnetic resonance (MR)-guided radiotherapy system in Japan was installed in May 2017. Implementation of online MR-guided adaptive radiotherapy (MRgART) began in February 2018. Online MRgART offers greater treatment accuracy owing to the high soft-tissue contrast in MR-images (MRI), compared to that in X-ray imaging. The Japanese Society for Magnetic Resonance in Medicine (JSMRM), Japan Society of Medical Physics (JSMP), Japan Radiological Society (JRS), Japanese Society of Radiological Technology (JSRT), and Japanese Society for Radiation Oncology (JASTRO) jointly established the comprehensive practical guidelines for online MRgART. These guidelines propose the essential requirements for clinical implementation of online MRgART with respect to equipment, personnel, institutional environment, practice guidance, and quality assurance/quality control (QA/QC). The minimum requirements for related equipment and QA/QC tools, recommendations for safe operation of MRI system, and the implementation system are described. The accuracy of monitor chamber and detector in dose measurements should be confirmed because of the presence of magnetic field. The ionization chamber should be MR-compatible. Non-MR-compatible devices should be used in an area that is not affected by the static magnetic field (outside the five Gauss line), and their operation should be checked to ensure that they do not affect the MR image quality. Dose verification should be performed using an independent dose verification system that has been confirmed to be reliable through commissioning. This guideline proposes the checklists to ensure the safety of online MRgART. Successful clinical implementation of online MRgART requires close collaboration between physician, radiological technologist, nurse, and medical physicist.


Asunto(s)
Oncología por Radiación , Radioterapia Guiada por Imagen , Imagen por Resonancia Magnética/métodos , Garantía de la Calidad de Atención de Salud , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos
14.
Phys Med ; 88: 91-97, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34214838

RESUMEN

PURPOSE: We experimentally determined the radiophotoluminescent glass dosimeter (RPLD) dose responses for TomoTherapy, CyberKnife, and flattening-filter-free (FFF) linear accelerator (linac) outputs for dosimetry audits in Japan. METHODS: A custom-made solid phantom with a narrow central-axis spacing of three RPLD elements was used for output measurement to minimise the dose-gradient effect of the non-flattening filter beams. For RPLD dose estimation, we used the ISO 22127 formalism. Additional unit-specific correction factors were introduced and determined via the measured data. For TomoTherapy (7 units) and CyberKnife (4 units), the doses were measured under machine-specific reference fields. For FFF linac (5 units), in addition to the reference condition, we obtained the field-size effects for the range from 5×5 cm to 25×25 cm. RESULTS: The correction factors were estimated as 1.008 and 0.999 for TomoTherapy and CyberKnife, respectively. For FFF linac, they ranged from 1.011 to 0.988 for 6 MV and from 1.011 to 0.997 for 10 MV as a function of the side length of the square field from 5 to 25 cm. The estimated uncertainties of the absorbed dose to water measured by RPLD for the units were 1.32%, 1.35%, and 1.30% for TomoTherapy, CyberKnife, and FFF linac, respectively. A summary of the dosimetry audits of these treatment units using the obtained correction factors is also presented. The average percentage differences between the measured and hospital-stated doses were <1% under all conditions. CONCLUSION: RPLD can be successfully used as a dosimetry audit tool for modern treatment units.


Asunto(s)
Dosímetros de Radiación , Radioterapia de Intensidad Modulada , Aceleradores de Partículas , Fantasmas de Imagen , Fotones , Radiometría
15.
J Radiat Res ; 62(1): 58-66, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33074329

RESUMEN

Institutional imaging protocols for the verification of brachytherapy applicator placements were investigated in a survey study of domestic radiotherapy institutions. The survey form designed by a free on-line survey system was distributed via the mailing-list system of the Japanese Society for Radiation Oncology. Survey data of 75 institutions between August 2019 and October 2019 were collected. The imaging modalities used were dependent on resources available to the institutions. The displacement of a brachytherapy applicator results in significant dosimetric impact. It is essential to verify applicator placements using imaging modalities before treatment. Various imaging modalities used in institutions included a computed tomography (CT) scanner, an angiography X-ray system, a multi-purpose X-ray system and a radiotherapy simulator. The median total exposure time in overall treatment sessions was $\le$75 s for gynecological and prostate cancers. Some institutions used fluoroscopy to monitor the brachytherapy source movement. Institutional countermeasures for reducing unwanted imaging dose included minimizing the image area, changing the imaging orientation, reducing the imaging frequency and optimizing the imaging conditions. It is worth noting that half of the institutions did not confirm imaging dose regularly. This study reported on the usage of imaging modalities for brachytherapy in Japan. More caution should be applied with interstitial brachytherapy with many catheters that can lead to potentially substantial increments in imaging doses for monitoring the actual brachytherapy source using fluoroscopy. It is necessary to share imaging techniques, standardize imaging protocols and quality assurance/quality control among institutions, and imaging dose guidelines for optimization of imaging doses delivered in radiotherapy should be developed.


Asunto(s)
Braquiterapia , Imagen Multimodal , Protección Radiológica , Interpretación de Imagen Radiográfica Asistida por Computador , Dosificación Radioterapéutica , Encuestas y Cuestionarios , Relación Dosis-Respuesta en la Radiación , Fluoroscopía , Humanos , Japón , Tomografía Computarizada por Rayos X
16.
Igaku Butsuri ; 40(3): 75-87, 2020.
Artículo en Japonés | MEDLINE | ID: mdl-32999254

RESUMEN

This study investigates the quality indicators (QIs) of medical care that are expected to be introduced to radiotherapy departments in Japan and evaluates whether the QIs reflect the characteristics of the treatment facilities. For this purpose, a questionnaire survey was administered to radiotherapy treatment facilities in Japan. A consensus of early QI candidates was obtained from the panel members. The characteristics identified in the candidate QIs were subdivided into 140 items covering 27 domains of medical-care contents in radiotherapy departments. These 140 items were compiled into a questionnaire, which was administered to 15 treatment facilities in Japan. The primary results indicated that 36 items in five domains are useful QI contents. The secondary findings indicated that the provision of advanced radiotherapy to several patients, the waiting time, and the radiotherapy initiated depend on the manpower of the departmental staff.


Asunto(s)
Indicadores de Calidad de la Atención de Salud , Radioterapia/normas , Humanos , Japón , Encuestas y Cuestionarios
17.
J Radiat Res ; 61(6): 999-1008, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32989445

RESUMEN

The Japan Clinical Oncology Group-Radiation Therapy Study Group (JCOG-RTSG) has initiated several multicenter clinical trials for high-precision radiotherapy, which are presently ongoing. When conducting multi-center clinical trials, a large difference in physical quantities, such as the absolute doses to the target and the organ at risk, as well as the irradiation localization accuracy, affects the treatment outcome. Therefore, the differences in the various physical quantities used in different institutions must be within an acceptable range for conducting multicenter clinical trials, and this must be verified with medical physics consideration. In 2011, Japan's first Medical Physics Working Group (MPWG) in the JCOG-RTSG was established to perform this medical-physics-related verification for multicenter clinical trials. We have developed an auditing method to verify the accuracy of the absolute dose and the irradiation localization. Subsequently, we credentialed the participating institutions in the JCOG multicenter clinical trials that were using stereotactic body radiotherapy (SBRT) for lungs, intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for several disease sites, and proton beam therapy (PT) for the liver. From the verification results, accuracies of the absolute dose and the irradiation localization among the participating institutions of the multicenter clinical trial were assured, and the JCOG clinical trials could be initiated.


Asunto(s)
Ensayos Clínicos como Asunto , Radiocirugia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia de Intensidad Modulada/métodos , Radioterapia de Intensidad Modulada/normas , Humanos , Cooperación Internacional , Japón , Fantasmas de Imagen , Terapia de Protones , Control de Calidad , Dosis de Radiación , Oncología por Radiación , Radiometría , Reproducibilidad de los Resultados
18.
Med Phys ; 47(11): 5852-5871, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32969046

RESUMEN

PURPOSE: The beam model in radiation treatment planning systems (RTPSs) plays a crucial role in determining the accuracy of calculated dose distributions. The purpose of this study was to ascertain differences in beam models and their dosimetric influences when a golden beam dataset (GBD) and multi-institution measured beam datasets (MBDs) are used for beam modeling in RTPSs. METHODS: The MBDs collected from 15 institutions, and the MBDs' beam models, were compared with a GBD, and the GBD's beam model, for Varian TrueBeam linear accelerator. The calculated dose distributions of the MBDs' beam models were compared with those of the GBD's beam model for simple geometries in a water phantom. Calculated dose distributions were similarly evaluated in volumetric modulated arc therapy (VMAT) plans for TG-119 C-shape and TG-244 head and neck, at several dose constraints of the planning target volumes (PTVs), and organs at risk. RESULTS: The agreements of the MBDs with the GBD were almost all within ±1%. The calculated dose distributions for simple geometries in a water phantom also closely corresponded between the beam models of GBD and MBDs. Nevertheless, there were considerable differences between the beam models. The maximum differences between the mean energy of the energy spectra of GBD and MBDs were -0.12 MeV (-10.5%) in AcurosXB (AXB, Eclipse) and 0.11 MeV (7.7%) in collapsed cone convolution (CCC, RayStation). The differences in the VMAT calculated dose distributions varied for each dose region, plan, X-ray energy, and dose calculation algorithm. The ranges of the differences in the dose constraints were -5.6% to 3.0% for AXB and -24.1% to 2.8% for CCC. In several VMAT plans, the calculated dose distributions of GBD's beam model tended to be lower in high-dose regions and higher in low-dose regions than those of the MBDs' beam models. CONCLUSIONS: We found that small differences in beam data have large impacts on the beam models, and on calculated dose distributions in clinical VMAT plan, even if beam data correspond within ±1%. GBD's beam model was not a representative beam model. The beam models of GBD and MBDs and their calculated dose distributions under clinical conditions were significantly different. These differences are most likely due to the extensive variation in the beam models, reflecting the characteristics of beam data. The energy spectrum and radial energy in the beam model varied in a wide range, even if the differences in the beam data were <±1%. To minimize the uncertainty of the calculated dose distributions in clinical plans, it was best to use the institutional MBD for beam modeling, or the beam model that ensures the accuracy of calculated dose distributions.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Algoritmos , Órganos en Riesgo , Radiometría , Dosificación Radioterapéutica
19.
Phys Med ; 64: 182-187, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31515018

RESUMEN

Over the last several decades, there have been great advances in radiotherapy with the development of new technologies and modalities, and radiotherapy trends have changed rapidly. To comprehend the current state of radiotherapy in Japan, the QA/QC 2016-2017 Committee of the Japan Society of Medical Physics set up an intensity-modulated radiotherapy/image-guided radiotherapy (IMRT/IGRT) working group and performed a Web-based survey to show the current status of radiotherapy in Japan. The Web-based questionnaire, developed using Google Forms, contained 42 items: 7 on stereotactic radiotherapy implementation, 4 on IMRT, 24 on IGRT, and 7 on respiratory motion management. The survey was conducted from 17 January to 9 March of 2018; in total, 335 institutions provided data. The results show that volumetric modulated arc therapy was used at a level comparable to that of static gantry IMRT. For IGRT, machine-integrated computed tomography (CT), including kilovoltage or megavoltage cone-beam CT and megavoltage CT, was used at many institutions in conjunction with target-based image registration. For respiratory motion management, breath holding was the most commonly used technique. Our hope is that multi-institutional surveys such as this one will be conducted periodically to elucidate the current status of radiotherapy and emerging developments in this field. If our questionnaire was distributed worldwide, in the same format, then global trends in radiotherapy could be better understood.


Asunto(s)
Radiocirugia/estadística & datos numéricos , Radioterapia Guiada por Imagen/estadística & datos numéricos , Radioterapia de Intensidad Modulada/estadística & datos numéricos , Sociedades Científicas , Encuestas y Cuestionarios , Humanos , Internet , Japón , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia
20.
Med Phys ; 46(11): 5185-5194, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31386762

RESUMEN

PURPOSE: The ICRU has published new recommendations for ionizing radiation dosimetry. In this work, the effect of recommendations on the water-to-air and graphite-to-air restricted mass electronic stopping power ratios (sw, air and sg, air ) and the individual perturbation correction factors Pi was calculated. The effect on the beam quality conversion factors kQ for reference dosimetry of high-energy photon beams was estimated for all ionization chambers listed in the Addendum to AAPM's TG-51 protocol. METHODS: The sw, air , sg, air , individual Pi, and kQ were calculated using EGSnrc Monte Carlo code system and key data of both ICRU report 37 and ICRU report 90. First, the Pi and kQ were calculated using precise models of eight ionization chambers: NE2571 (Nuclear Enterprise), 30013, 31010, 31021 (PTW), Exradin A12, A12S, A1SL (Standard imaging), and FC-65P (IBA). In this simulation, the radiation sources were one 60 Co beam and ten photon beams with nominal energy between 4 MV and 25 MV. Then, the change in kQ for ionization chambers listed in the Addendum to AAPM's TG-51 protocol was calculated by changing the specification of the simple-model of ionization chamber. The simple-models were made with only cylindrical component modules. In this simulation, the radiation sources of 60 Co beam and 24 MV photon beam were used. RESULTS: The significant changes (p < 0.05) were observed for sw, air , sg, air , the wall correction factor Pwall , and the waterproofing sleeve correction factor Psleeve . The decrease in sw, air varied from -0.57% for a 60 Co beam to -0.36% for the highest beam quality. The decrease in sg, air varied from -0.72% to -1.12% in the same range. The changes in Pwall and Psleeve were up to 0.41% and 0.14% and those maximum changes were observed for the 60 Co beam. All changes in the central electrode correction factor Pcel , the stem correction factor Pstem , and the replacement correction factor Prepl were from -0.02% to 0.12%. Those changes were statistically insignificant (p = 0.07 or more) and were independent of photon energy. The change in kQ was mainly characterized by the change in sw, air , Pwall , and Psleeve . The relationship between the change in kQ and the beam quality index was linear approximately. The changes in kQ of the simple-models were agreed with those of the precise-models within 0.08%. CONCLUSION: The effects of ICRU-90 recommendations on kQ for the ionization chambers listed in the Addendum to AAPM's TG-51 protocol were from -0.15% to 0.30%. To remove the known systematic effect on the clinical reference dosimetry, the kQ based on ICRU-37 should be updated to the kQ based on ICRU-90.


Asunto(s)
Agencias Internacionales , Método de Montecarlo , Radiometría/instrumentación , Informe de Investigación , Sociedades Médicas , Radioisótopos de Cobalto , Guías como Asunto , Fotones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...