RESUMEN
Pulmonary hypertension (PH) is a life-threatening disease characterized by a progressive narrowing of pulmonary arterioles. Although VEGF is highly expressed in lung of patients with PH and in animal PH models, the involvement of angiogenesis remains elusive. To clarify the pathophysiological function of angiogenesis in PH, we compared the angiogenic response in hypoxia (Hx) and SU5416 (a VEGFR2 inhibitor) plus Hx (SuHx) mouse PH models using 3D imaging. The 3D imaging analysis revealed an angiogenic response in the lung of the Hx-PH, but not of the severer SuHx-PH model. Selective VEGFR2 inhibition with cabozantinib plus Hx in mice also suppressed angiogenic response and exacerbated Hx-PH to the same extent as SuHx. Expression of endothelial proliferator-activated receptor γ coactivator 1α (PGC-1α) increased along with angiogenesis in lung of Hx-PH but not SuHx mice. In pulmonary endothelial cell-specific Ppargc1a-KO mice, the Hx-induced angiogenesis was suppressed, and PH was exacerbated along with increased oxidative stress, cellular senescence, and DNA damage. By contrast, treatment with baicalin, a flavonoid enhancing PGC-1α activity in endothelial cells, ameliorated Hx-PH with increased Vegfa expression and angiogenesis. Pulmonary endothelial PGC-1α-mediated angiogenesis is essential for adaptive responses to Hx and might represent a potential therapeutic target for PH.
Asunto(s)
Hipertensión Pulmonar , Animales , Ratones , Senescencia Celular , Modelos Animales de Enfermedad , Daño del ADN , Células Endoteliales , Hipertensión Pulmonar/prevención & control , HipoxiaRESUMEN
Cardiovascular disease (CVD) is a global health burden in the world. Although low-carbohydrate diets (LCDs) have beneficial effects on CVD risk, their preventive effects remain elusive. We investigated whether LCDs ameliorate heart failure (HF) using a murine model of pressure overload. LCD with plant-derived fat (LCD-P) ameliorated HF progression, whereas LCD with animal-derived fat (LCD-A) aggravated inflammation and cardiac dysfunction. In the hearts of LCD-P-fed mice but not LCD-A, fatty acid oxidation-related genes were highly expressed, and peroxisome proliferator-activated receptor α (PPARα), which regulates lipid metabolism and inflammation, was activated. Loss- and gain-of-function experiments indicated the critical roles of PPARα in preventing HF progression. Stearic acid, which was more abundant in the serum and heart of LCD-P-fed mice, activated PPARα in cultured cardiomyocytes. We highlight the importance of fat sources substituted for reduced carbohydrates in LCDs and suggest that the LCD-P-stearic acid-PPARα pathway as a therapeutic target for HF.
Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Ratones , Animales , PPAR alfa/genética , PPAR alfa/metabolismo , Dieta Baja en Carbohidratos , InflamaciónRESUMEN
Using the Cre-loxP system, we generated the first mouse model in which estrogen receptor-α non-nuclear signaling was inactivated in endothelial cells. Estrogen protection against mechanical vascular injury was impaired in this model. This result indicates the pivotal role of endothelial estrogen receptor-α non-nuclear signaling in the vasculoprotective effects of estrogen.
RESUMEN
Tissue fibrosis and organ dysfunction are hallmarks of age-related diseases including heart failure, but it remains elusive whether there is a common pathway to induce both events. Through single-cell RNA-seq, spatial transcriptomics, and genetic perturbation, we elucidate that high-temperature requirement A serine peptidase 3 (Htra3) is a critical regulator of cardiac fibrosis and heart failure by maintaining the identity of quiescent cardiac fibroblasts through degrading transforming growth factor-ß (TGF-ß). Pressure overload downregulates expression of Htra3 in cardiac fibroblasts and activated TGF-ß signaling, which induces not only cardiac fibrosis but also heart failure through DNA damage accumulation and secretory phenotype induction in failing cardiomyocytes. Overexpression of Htra3 in the heart inhibits TGF-ß signaling and ameliorates cardiac dysfunction after pressure overload. Htra3-regulated induction of spatio-temporal cardiac fibrosis and cardiomyocyte secretory phenotype are observed specifically in infarct regions after myocardial infarction. Integrative analyses of single-cardiomyocyte transcriptome and plasma proteome in human reveal that IGFBP7, which is a cytokine downstream of TGF-ß and secreted from failing cardiomyocytes, is the most predictable marker of advanced heart failure. These findings highlight the roles of cardiac fibroblasts in regulating cardiomyocyte homeostasis and cardiac fibrosis through the Htra3-TGF-ß-IGFBP7 pathway, which would be a therapeutic target for heart failure.
Asunto(s)
Insuficiencia Cardíaca , Factor de Crecimiento Transformador beta , Fibroblastos/metabolismo , Fibrosis , Insuficiencia Cardíaca/metabolismo , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
The underlying mechanisms of ventricular remodeling after myocardial infarction (MI) remain largely unknown. In this study, we performed an integrative analysis of spatial transcriptomics and single-nucleus RNA sequencing (snRNA-seq) in a murine MI model and found that mechanical stress-response genes are expressed at the border zone and play a critical role in left ventricular remodeling after MI. An integrative analysis of snRNA-seq and spatial transcriptome of the heart tissue after MI identified the unique cluster that appeared at the border zone in an early stage, highly expressing mechano-sensing genes, such as Csrp3. AAV9-mediated gene silencing and overexpression of Csrp3 demonstrated that upregulation of Csrp3 plays critical roles in preventing cardiac remodeling after MI by regulation of genes associated with mechano-sensing. Overall, our study not only provides an insight into spatiotemporal molecular changes after MI but also highlights that the mechano-sensing genes at the border zone act as adaptive regulators of left ventricular remodeling.
RESUMEN
Most seven transmembrane receptors (7TMRs) are G protein-coupled receptors; however, some 7TMRs evoke intracellular signals through ß-arrestin as a biased receptor. As several ß-arrestin-biased agonists have been reported to be cardioprotective, we examined the role of the chemokine receptor CXCR7 as a ß-arrestin-biased receptor in the heart. Among 510 7TMR genes examined, Cxcr7 was the most abundantly expressed in the murine heart. Single-cell RNA-sequencing analysis revealed that Cxcr7 was abundantly expressed in cardiomyocytes and fibroblasts. Cardiomyocyte-specific Cxcr7 null mice showed more prominent cardiac dilatation and dysfunction than control mice 4 weeks after myocardial infarction. In contrast, there was no difference in cardiac phenotypes between fibroblast-specific Cxcr7-knockout mice and control mice even after myocardial infarction. TC14012, a specific agonist of CXCR7, significantly recruited ß-arrestin to CXCR7 in CXCR7-expressing cells and activated extracellular signal-regulated kinase (ERK) in neonatal rat cardiomyocytes. Cxcr7 expression was significantly increased and ERK was activated in the border zone of the heart in control, but not Cxcr7 null mice. These results indicate that the abundantly expressed CXCR7 in cardiomyocytes may play a protective role in the heart as a ß-arrestin-biased receptor and that CXCR7 may be a novel therapeutic target for myocardial infarction.
Asunto(s)
Sistema de Señalización de MAP Quinasas , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Receptores CXCR/metabolismo , beta-Arrestina 1/metabolismo , Animales , Ratones , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/patología , Oligopéptidos/farmacología , Receptores CXCR/agonistas , Receptores CXCR/genética , beta-Arrestina 1/genéticaRESUMEN
Increased transforming growth factor-ß (TGF-ß) signaling contributes to the pathophysiology of aortic aneurysm in Marfan syndrome (MFS). Recent reports indicate that a small but significant number of inflammatory cells are infiltrated into the aortic media and adventitia in MFS. However, little is known about the contribution of myeloid cells to aortic aneurysmal formation. In this study, we ablated the TGF-ß type II receptor gene Tgfbr2 in myeloid cells of Fbn1C1039G/+ MFS mice (Fbn1C1039G/+;LysM-Cre/+;Tgfbr2fl/fl mice, hereinafter called Fbn1C1039G/+;Tgfbr2MyeKO) and evaluated macrophage infiltration and TGF-ß signaling in the aorta. Aneurysmal formation with fragmentation and disarray of medial elastic fibers observed in MFS mice was significantly ameliorated in Fbn1C1039G/+;Tgfbr2MyeKO mice. In the aorta of Fbn1C1039G/+;Tgfbr2MyeKO mice, both canonical and noncanonical TGF-ß signals were attenuated and the number of infiltrated F4/80-positive macrophages was significantly reduced. In vitro, TGF-ß enhanced the migration capacity of RAW264.7 macrophages. These findings suggest that TGF-ß signaling in myeloid cells promotes aortic aneurysmal formation and its inhibition might be a novel therapeutic target in MFS.
Asunto(s)
Aneurisma de la Aorta Torácica/patología , Síndrome de Marfan/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta2/metabolismo , Adventicia/citología , Animales , Aorta/patología , Línea Celular , Movimiento Celular , Proliferación Celular , Fibrilina-1/genética , Activación de Macrófagos/genética , Macrófagos/inmunología , Ratones , Ratones Noqueados , Células RAW 264.7 , Transducción de SeñalRESUMEN
Some clinical trials showed that omega-3 fatty acid (FA) reduced cardiovascular events, but it remains unknown whether omega-3 FA supplementation changes the composition of FAs and their metabolites in the heart and how the changes, if any, exert beneficial effects on cardiac structure and function. To clarify these issues, we supplied omega-3 FA to mice exposed to pressure overload, and examined cardiac structure and function by echocardiography and a proportion of FAs and their metabolites by gas chromatography and liquid chromatography-tandem mass spectrometry, respectively. Pressure overload induced cardiac hypertrophy and dysfunction, and reduced concentration of all FAs' components and increased free form arachidonic acid and its metabolites, precursors of pro-inflammatory mediators in the heart. Omega-3 FA supplementation increased both total and free form of eicosapentaenoic acid, a precursor of pro-resolution mediators and reduced free form arachidonic acid in the heart. Omega-3 FA supplementation suppressed expressions of pro-inflammatory cytokines and the infiltration of inflammatory cells into the heart and ameliorated cardiac dysfunction and fibrosis. These results suggest that omega-3 FA-induced changes of FAs composition in the heart have beneficial effects on cardiac function via regulating inflammation.
Asunto(s)
Ácidos Grasos Omega-3/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Corazón/efectos de los fármacos , Inflamación/tratamiento farmacológico , Animales , Ácido Araquidónico/metabolismo , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cromatografía de Gases , Cromatografía Liquida , Modelos Animales de Enfermedad , Ecocardiografía , Ácido Eicosapentaenoico/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Corazón/diagnóstico por imagen , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Inflamación/diagnóstico por imagen , Inflamación/metabolismo , Inflamación/patología , Ratones , Miocardio/metabolismo , Espectrometría de Masas en TándemRESUMEN
Pathophysiological roles of cardiac dopamine system remain unknown. Here, we show the role of dopamine D1 receptor (D1R)-expressing cardiomyocytes (CMs) in triggering heart failure-associated ventricular arrhythmia. Comprehensive single-cell resolution analysis identifies the presence of D1R-expressing CMs in both heart failure model mice and in heart failure patients with sustained ventricular tachycardia. Overexpression of D1R in CMs disturbs normal calcium handling while CM-specific deletion of D1R ameliorates heart failure-associated ventricular arrhythmia. Thus, cardiac D1R has the potential to become a therapeutic target for preventing heart failure-associated ventricular arrhythmia.
Asunto(s)
Arritmias Cardíacas/etiología , Insuficiencia Cardíaca , Miocitos Cardíacos/metabolismo , Receptores de Dopamina D1/metabolismo , Animales , Arritmias Cardíacas/prevención & control , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , Ratones Transgénicos , Ratas , Receptores de Dopamina D1/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Taquicardia Ventricular/etiología , Taquicardia Ventricular/prevención & controlRESUMEN
Using genetically engineered mice lacking estrogen receptor-α non-nuclear signaling, this study demonstrated that estrogen receptor-α non-nuclear signaling activated myocardial cyclic guanosine monophosphate-dependent protein kinase G and conferred protection against cardiac remodeling induced by pressure overload. This pathway was indispensable to the therapeutic efficacy of cyclic guanosine monophosphate-phosphodiesterase 5 inhibition but not to that of soluble guanylate cyclase stimulation. These results might partially explain the equivocal results of phosphodiesterase 5 inhibitor efficacy and also provide the molecular basis for the advantage of using a soluble guanylate cyclase simulator as a new therapeutic option in post-menopausal women. This study also highlighted the need for female-specific therapeutic strategies for heart failure.
RESUMEN
The efficacy of drug-coated balloons (DCB) for in-stent restenosis (ISR) in hemodialysis (HD) patients remains unclear.We retrospectively evaluated 153 consecutive patients who underwent DCB for ISR with follow-ups for up to 3 years after the procedure between February 2014 and June 2017. Patients were divided into an HD group (n = 39) and a non-HD group (n = 114). The primary endpoint was target lesion revascularization (TLR). The secondary endpoints were all revascularizations and major adverse cardiac events (MACE) defined as cardiac death, myocardial infarction and cerebral infarction. Kaplan-Meier curves of survival free from TLR were compared between the two groups. We also performed propensity score matching and then compared the two matched groups (n = 27 in each group). The acute procedure success rate was similar for the two groups (100% versus 99.1%, P = 0.56). The incidence of TLR was higher in the HD group than in the non-HD group (41.0% versus 9.6%, P < 0.0001). The rate of revascularizations and MACE combined was significantly higher in the HD group than in the non-HD group (64.1% versus 17.5%, P < 0.0001). Kaplan-Meier analyses showed that survival free from TLR was significantly lower in the HD group than in the non-HD group both before and after propensity score matching (P < 0.0001 and P = 0.005, respectively; log-rank test).Contrary to the similar acute procedure success, recurrent ISR and MACE occurred more frequently in HD patients than in non-HD patients after DCB, which indicates poorer long-term efficacy of DCB in HD patients.
Asunto(s)
Angioplastia Coronaria con Balón/efectos adversos , Catéteres Cardíacos/efectos adversos , Reestenosis Coronaria/terapia , Estenosis Coronaria/terapia , Stents Liberadores de Fármacos/efectos adversos , Diálisis Renal/métodos , Anciano , Angioplastia Coronaria con Balón/instrumentación , Angioplastia Coronaria con Balón/métodos , Estudios de Casos y Controles , Causas de Muerte , Materiales Biocompatibles Revestidos , Reestenosis Coronaria/diagnóstico por imagen , Reestenosis Coronaria/mortalidad , Estenosis Coronaria/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Hospitales Universitarios , Humanos , Estimación de Kaplan-Meier , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Revascularización Miocárdica/métodos , Revascularización Miocárdica/mortalidad , Paclitaxel/farmacología , Puntaje de Propensión , Diálisis Renal/estadística & datos numéricos , Estudios Retrospectivos , Medición de Riesgo , Análisis de Supervivencia , Factores de Tiempo , Resultado del TratamientoRESUMEN
The 83rdAnnual Scientific Meeting of the Japanese Circulation Society was held in Yokohama, Japan, on March 29-31, 2019, just as the cherry blossoms came into full bloom. Because the environment around cardiovascular healthcare is rapidly changing, it becomes highly important to make a breakthrough at the dawn of a new era. The main theme of this meeting was "Renaissance of Cardiology for the Creation of Future Medicine". The meeting benefited from the participation of 18,825 people, and there were in-depth and extensive discussions at every session, focusing on topics covering clinical and basic research, medical care provision system, human resource development, and public awareness in cardiovascular medicine. The meeting was completed with great success, and we greatly appreciate the tremendous cooperation and support from all affiliates.
Asunto(s)
Investigación Biomédica/tendencias , Cardiología/tendencias , Enfermedades Cardiovasculares , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/terapia , Difusión de Innovaciones , HumanosAsunto(s)
Células Endoteliales , Miocitos Cardíacos , Animales , Hipertrofia , Comunicación Paracrina , Transducción de SeñalRESUMEN
BACKGROUND: The heart responds to hemodynamic overload through cardiac hypertrophy and activation of the fetal gene program. However, these changes have not been thoroughly examined in individual cardiomyocytes, and the relation between cardiomyocyte size and fetal gene expression remains elusive. We established a method of high-throughput single-molecule RNA imaging analysis of in vivo cardiomyocytes and determined spatial and temporal changes during the development of heart failure. METHODS AND RESULTS: We applied three novel single-cell analysis methods, namely, single-cell quantitative PCR (sc-qPCR), single-cell RNA sequencing (scRNA-seq), and single-molecule fluorescence in situ hybridization (smFISH). Isolated cardiomyocytes and cross sections from pressure overloaded murine hearts after transverse aortic constriction (TAC) were analyzed at an early hypertrophy stage (2â¯weeks, TAC2W) and at a late heart failure stage (8â¯weeks, TAC8W). Expression of myosin heavy chain ß (Myh7), a representative fetal gene, was induced in some cardiomyocytes in TAC2W hearts and in more cardiomyocytes in TAC8W hearts. Expression levels of Myh7 varied considerably among cardiomyocytes. Myh7-expressing cardiomyocytes were significantly more abundant in the middle layer, compared with the inner or outer layers of TAC2W hearts, while such spatial differences were not observed in TAC8W hearts. Expression levels of Myh7 were inversely correlated with cardiomyocyte size and expression levels of mitochondria-related genes. CONCLUSIONS: We developed a new image-analysis pipeline to allow automated and unbiased quantification of gene expression at the single-cell level and determined the spatial and temporal regulation of heterogenous Myh7 expression in cardiomyocytes after pressure overload.
Asunto(s)
Aorta/diagnóstico por imagen , Cardiomegalia/genética , Insuficiencia Cardíaca/diagnóstico por imagen , Imagen Molecular/métodos , Cadenas Pesadas de Miosina/genética , Animales , Aorta/metabolismo , Aorta/patología , Cardiomegalia/diagnóstico , Cardiomegalia/diagnóstico por imagen , Regulación de la Expresión Génica/genética , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Insuficiencia Cardíaca/patología , Hemodinámica , Hibridación Fluorescente in Situ , Ratones , Mitocondrias/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/aislamiento & purificación , ARN/genética , ARN/aislamiento & purificación , Análisis de Secuencia de ARN , Imagen Individual de Molécula , Análisis de la Célula IndividualRESUMEN
Accumulating data suggest that new cardiomyocytes in adults are generated from existing cardiomyocytes throughout life. To enhance the endogenous cardiac regeneration, we performed chemical screenings to identify compounds that activate pro-proliferative YES-associated protein and transcriptional enhancer factor domain activities in cardiomyocytes. We synthesized a novel fluorine-containing TT-10 (C11H10FN3OS2) from the biologically hit compound. TT-10 promoted cardiomyocyte proliferation and simultaneously exerted antioxidant and antiapoptotic effects in vitro. TT-10 treatment in mice ameliorated myocardial infarction-induced cardiac dysfunction at least in part via enhancing clonal expansion of existing cardiomyocytes with nuclear YES-associated protein expression. Stimulating cardiomyocyte proliferation and/or protection with TT-10 might complement current therapies for myocardial infarction.
RESUMEN
Pressure overload induces a transition from cardiac hypertrophy to heart failure, but its underlying mechanisms remain elusive. Here we reconstruct a trajectory of cardiomyocyte remodeling and clarify distinct cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure, by integrating single-cardiomyocyte transcriptome with cell morphology, epigenomic state and heart function. During early hypertrophy, cardiomyocytes activate mitochondrial translation/metabolism genes, whose expression is correlated with cell size and linked to ERK1/2 and NRF1/2 transcriptional networks. Persistent overload leads to a bifurcation into adaptive and failing cardiomyocytes, and p53 signaling is specifically activated in late hypertrophy. Cardiomyocyte-specific p53 deletion shows that cardiomyocyte remodeling is initiated by p53-independent mitochondrial activation and morphological hypertrophy, followed by p53-dependent mitochondrial inhibition, morphological elongation, and heart failure gene program activation. Human single-cardiomyocyte analysis validates the conservation of the pathogenic transcriptional signatures. Collectively, cardiomyocyte identity is encoded in transcriptional programs that orchestrate morphological and functional phenotypes.
Asunto(s)
Cardiomegalia/genética , Cardiomegalia/patología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transcriptoma/genética , Animales , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Humanos , Masculino , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual , Proteína p53 Supresora de Tumor/metabolismoAsunto(s)
Amlodipino/administración & dosificación , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Bloqueadores de los Canales de Calcio/administración & dosificación , Animales , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/prevención & control , Sistemas de Liberación de Medicamentos , Humanos , Ratones , Medición de Riesgo , Factores de Riesgo , Tasa de Supervivencia , Resultado del TratamientoRESUMEN
Variants in TGFBR1 have been reported to induce two completely distinct diseases, namely Loeys-Dietz syndrome (LDS) and multiple self-healing squamous epithelioma (MSSE). However, detailed mechanisms underlying this effect remain unknown. We report a Japanese familial case of LDS with a novel splice donor site variant in TGFBR1 gene (c.973 + 1 G > A; NG_007461.1). The intronic variant was predicted to mediate in-frame exon 5 skipping within the serine/threonine kinase (STK) domain, which may also be mediated by a similar TGFBR1 variant of a splice acceptor site in intron 4 (c.806-2 A > C), identified in a British familial case of MSSE. Therefore, ex vivo splicing and functional assays were performed in mammalian cells to evaluate the effect of these sequence variants. The MSSE variant activated a cryptic acceptor site at 76 bp downstream of the 3' natural splice acceptor site, which produced an out-of-frame transcript (r.807_882del, p.Asn270Thrfs*8). In contrast, the LDS variant generated two types of in-frame transcription products, r.[806_973del, 965_973 del], and produced two functionally inactivated proteins, p.[Asp269_Gln324del, Thr323_Gly325del], as a result of exon 5 skipping and the activation of a cryptic donor splice site at 9 bp upstream of the 5' natural splice donor site, respectively. Our results support the previously proposed but not yet approved mechanism that dominant-negative and truncating variants in STK domain induce LDS and MSSE, respectively.