Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Eng Sci Med ; 46(4): 1411-1426, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37603131

RESUMEN

This study incorporated topology Betti number (BN) features into the prediction of primary sites of brain metastases and the construction of magnetic resonance-based imaging biopsy (MRB) models. The significant features of the MRB model were selected from those obtained from gray-scale and three-dimensional wavelet-filtered images, BN and inverted BN (iBN) maps, and clinical variables (age and gender). The primary sites were predicted as either lung cancer or other cancers using MRB models, which were built using seven machine learning methods with significant features chosen by three feature selection methods followed by a combination strategy. Our study dealt with a dataset with relatively smaller brain metastases, which included effective diameters greater than 2 mm, with metastases ranging from 2 to 9 mm accounting for 17% of the dataset. The MRB models were trained by T1-weighted contrast-enhanced images of 494 metastases chosen from 247 patients and applied to 115 metastases from 62 test patients. The most feasible model attained an area under the receiver operating characteristic curve (AUC) of 0.763 for the test patients when using a signature including features of BN and iBN maps, gray-scale and wavelet-filtered images, and clinical variables. The AUCs of the model were 0.744 for non-small cell lung cancer and 0.861 for small cell lung cancer. The results suggest that the BN signature boosted the performance of MRB for the identification of primary sites of brain metastases including small tumors.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Biopsia , Espectroscopía de Resonancia Magnética
2.
Materials (Basel) ; 15(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35329660

RESUMEN

In this work, laser-heated electrospinning (LES) process using carbon dioxide laser was explored as an eco-friendly method for producing ultrafine fibers. To enhance the thinning of fibers and the formation of fiber structure, planar or equibiaxial stretching and subsequent annealing processes were applied to poly(ethylene terephthalate) (PET) fiber webs prepared by LES. The structure and properties of the obtained webs were investigated. Ultrafine fiber webs with an average diameter of approximately 1 µm and a coefficient of variation of 20-25% were obtained when the stretch ratios in the MD (machine direction) × TD (transverse direction) were 3 × 1 and 3 × 3 for the planar and equibiaxial stretching, respectively. In the wide-angle X-ray diffraction analysis of the web samples, preferential orientation of crystalline c-axis were confirmed along the MD for planar stretching and only along the web plane for equibiaxial stretching, which was in contrast to the stretching of film samples, where additional preferential orientation of benzene ring along the film plane proceeded. The results obtained suggest that PET fiber webs fabricated through LES and subsequent planar or biaxial stretching processes have potential for a wide variety of applications, such as packaging and battery separator materials.

3.
Front Psychiatry ; 12: 683280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483983

RESUMEN

Recently, the dimensional approach has attracted much attention, bringing a paradigm shift to a continuum of understanding of different psychiatric disorders. In line with this new paradigm, we examined whether there was common functional connectivity related to various psychiatric disorders in an unsupervised manner without explicitly using diagnostic label information. To this end, we uniquely applied a newly developed network-based multiple clustering method to resting-state functional connectivity data, which allowed us to identify pairs of relevant brain subnetworks and subject cluster solutions accordingly. Thus, we identified four subject clusters, which were characterized as major depressive disorder (MDD), young healthy control (young HC), schizophrenia (SCZ)/bipolar disorder (BD), and autism spectrum disorder (ASD), respectively, with the relevant brain subnetwork represented by the cerebellum-thalamus-pallidum-temporal circuit. The clustering results were validated using independent datasets. This study is the first cross-disorder analysis in the framework of unsupervised learning of functional connectivity based on a data-driven brain subnetwork.

4.
Neural Netw ; 142: 269-287, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34052471

RESUMEN

In neuroscience, the functional magnetic resonance imaging (fMRI) is a vital tool to non-invasively access brain activity. Using fMRI, the functional connectivity (FC) between brain regions can be inferred, which has contributed to a number of findings of the fundamental properties of the brain. As an important clinical application of FC, clustering of subjects based on FC recently draws much attention, which can potentially reveal important heterogeneity in subjects such as subtypes of psychiatric disorders. In particular, a multiple clustering method is a powerful analytical tool, which identifies clustering patterns of subjects depending on their FC in specific brain areas. However, when one applies an existing multiple clustering method to fMRI data, there is a need to simplify the data structure, independently dealing with elements in a FC matrix, i.e., vectorizing a correlation matrix. Such a simplification may distort the clustering results. To overcome this problem, we propose a novel multiple clustering method based on Wishart mixture models, which preserves the correlation matrix structure without vectorization. The uniqueness of this method is that the multiple clustering of subjects is based on particular networks of nodes (or regions of interest, ROIs), optimized in a data-driven manner. Hence, it can identify multiple underlying pairs of associations between a subject cluster solution and a ROI sub-network. The key assumption of the method is independence among sub-networks, which is effectively addressed by whitening correlation matrices. We applied the proposed method to synthetic and fMRI data, demonstrating the usefulness and power of the proposed method.


Asunto(s)
Mapeo Encefálico , Encéfalo , Imagen por Resonancia Magnética , Atención , Encéfalo/diagnóstico por imagen , Análisis por Conglomerados , Humanos
5.
Materials (Basel) ; 13(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352872

RESUMEN

Melt-electrospinning is an eco-friendly method for producing ultra-fine fibers without using any solvent. We prepared webs of poly(ethylene terephthalate) (PET) through melt-electrospinning using CO2 laser irradiation for heating. The PET webs comprised ultra-fine fibers of uniform diameter (average fiber diameter = 1.66 µm, coefficient of variation = 19%). The co-existence of fibers with high and low molecular orientation was confirmed through birefringence measurements. Although the level of high orientation corresponded to that of commercial highly oriented yarn, crystalline diffraction was not observed in the wide-angle X-ray diffraction (WAXD) analysis of the webs. The crystallinity of the webs was estimated using differential scanning calorimetry (DSC). The fibers with higher birefringence did not exhibit any cold crystallization peak. After annealing the web at 116 °C for 5 min, a further increase in the birefringence of the fibers with higher orientation was observed. The WAXD results revealed that the annealed webs showed crystalline diffraction peaks with the orientation of the c-axis along the fiber axis. In summary, the formation of fibers with a unique non-crystalline structure with extremely high orientation was confirmed.

6.
Sci Rep ; 9(1): 9330, 2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31249380

RESUMEN

Recently, slow earthquakes (slow EQ) have received much attention relative to understanding the mechanisms underlying large earthquakes and to detecting their precursors. Low-frequency earthquakes (LFE) are a specific type of slow EQ. In the present paper, we reveal the relevance of LFEs to the 11 March 2011 Great Tohoku Earthquake (Tohoku-oki EQ) by means of cluster analysis. We classified LFEs in northern Japan in a data-driven manner, based on inter-time, the time interval between neighboring LFEs occurring within 10 km. We found that there are four classes of LFE that are characterized by median inter-times of 24 seconds, 27 minutes, 2.0 days, and 35 days, respectively. Remarkably, in examining the relevance of these classes to the Tohoku-oki EQ, we found that activity in the shortest inter-time class (median 24 seconds) diminished significantly at least three months before the Tohoku-oki EQ, and became completely quiescent 30 days before the event (p-value = 0.00014). Further statistical analysis implies that this class, together with a similar class of volcanic tremor, may have served as a precursor of the Tohoku-oki EQ. We discuss a generative model for these classes of LFE, in which the shortest inter-time class is characterized by a generalized gamma distribution with the product of shape parameters vκ = 1:54 in the domain of inter-time close to zero. We give a possible geodetic interpretation for the relevance of LFE to the Tohoku-oki EQ.

7.
Sci Rep ; 8(1): 14082, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237567

RESUMEN

It is well known that depressive disorder is heterogeneous, yet little is known about its neurophysiological subtypes. In the present study, we identified neurophysiological subtypes of depression related to specific neural substrates. We performed cluster analysis for 134 subjects (67 depressive subjects and 67 controls) using a high-dimensional dataset consisting of resting state functional connectivity measured by functional MRI, clinical questionnaire scores, and various biomarkers. Applying a newly developed, multiple co-clustering method to this dataset, we identified three subtypes of depression that are characterized by functional connectivity between the right Angular Gyrus (AG) and other brain areas in default mode networks, and Child Abuse Trauma Scale (CATS) scores. These subtypes are also related to Selective Serotonin-Reuptake Inhibitor (SSRI) treatment outcomes, which implies that we may be able to predict effectiveness of treatment based on AG-related functional connectivity and CATS.


Asunto(s)
Encéfalo/diagnóstico por imagen , Trastorno Depresivo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Adulto , Antidepresivos/uso terapéutico , Bases de Datos Factuales , Trastorno Depresivo/tratamiento farmacológico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
8.
Nat Commun ; 9(1): 2048, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29858574

RESUMEN

Recent experiments have shown that optogenetic activation of serotonin neurons in the dorsal raphe nucleus (DRN) in mice enhances patience in waiting for future rewards. Here, we show that serotonin effect in promoting waiting is maximized by both high probability and high timing uncertainty of reward. Optogenetic activation of serotonergic neurons prolongs waiting time in no-reward trials in a task with 75% food reward probability, but not with 50 or 25% reward probabilities. Serotonin effect in promoting waiting increases when the timing of reward presentation becomes unpredictable. To coherently explain the experimental data, we propose a Bayesian decision model of waiting that assumes that serotonin neuron activation increases the prior probability or subjective confidence of reward delivery. The present data and modeling point to the possibility of a generalized role of serotonin in resolving trade-offs, not only between immediate and delayed rewards, but also between sensory evidence and subjective confidence.


Asunto(s)
Conducta Animal/fisiología , Núcleo Dorsal del Rafe/fisiología , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Animales , Teorema de Bayes , Channelrhodopsins/genética , Masculino , Ratones , Ratones Transgénicos , Optogenética/métodos , Probabilidad , Recompensa
9.
PLoS One ; 13(3): e0194079, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29558487

RESUMEN

We propose a novel method to test the existence of community structure in undirected, real-valued, edge-weighted graphs. The method is based on the asymptotic behavior of extreme eigenvalues of a real symmetric edge-weight matrix. We provide a theoretical foundation for this method and report on its performance using synthetic and real data, suggesting that this new method outperforms other state-of-the-art methods.


Asunto(s)
Características de la Residencia/estadística & datos numéricos , Algoritmos , Modelos Teóricos
10.
PLoS One ; 12(10): e0186566, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29049392

RESUMEN

We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data.


Asunto(s)
Modelos Teóricos , Análisis por Conglomerados , Funciones de Verosimilitud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...