Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961304

RESUMEN

Atomic-scale observations of a specific local area would be considerably beneficial when exploring new fundamental materials and devices. The development of hardware-type aberration correction1,2 in electron microscopy has enabled local structural observations with atomic resolution3-5 as well as chemical and vibration analysis6-8. In magnetic imaging, however, atomic-level spin configurations are analysed by electron energy-loss spectroscopy by placing samples in strong magnetic fields9-11, which destroy the nature of the magnetic ordering in the samples. Although magnetic-field-free observations can visualize the intrinsic magnetic fields of an antiferromagnet by unit-cell averaging12, directly observing the magnetic field of an individual atomic layer of a non-uniform structure is challenging. Here we report that the magnetic fields of an individual lattice plane inside materials with a non-uniform structure can be observed under magnetic-field-free conditions by electron holography with a hardware-type aberration corrector assisted by post-digital aberration correction. The magnetic phases of the net magnetic moments of (111) lattice planes formed by opposite spin orderings between Fe3+ and Mo5+ in a ferrimagnetic double-perovskite oxide (Ba2FeMoO6) were successfully observed. This result opens the door to direct observations of the magnetic lattice in local areas, such as interfaces and grain boundaries, in many materials and devices.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38976987

RESUMEN

The study of phonon dynamics and its interplay with magnetic ordering is crucial for understanding the unique quantum phases in the pyrochlore iridates. Here, through inelastic X-ray scattering on a single crystal sample of the pyrochlore iridate Eu2Ir2O7, we map out the phonon excitation spectra in Eu2Ir2O7 and compare them with the theoretical phonon spectra calculated using the density functional theory. Possible phonon renormalization across the magnetic long-range order transition is observed in our experiments, which is consistent with the results of the previous Raman scattering experiments.

3.
Nat Commun ; 15(1): 4699, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844471

RESUMEN

Direct conversion from terahertz photon to charge current is a key phenomenon for terahertz photonics. Quantum geometrical description of optical processes in crystalline solids predicts existence of field-unbiased dc photocurrent arising from terahertz-light generation of magnetic excitations in multiferroics, potentially leading to fast and energy-efficient terahertz devices. Here, we demonstrate the dc charge current generation from terahertz magnetic excitations in multiferroic perovskite manganites with spin-driven ferroelectricity, while keeping an insulating state with no free carrier. It is also revealed that electromagnon, which ranges sub-terahertz to 2 THz, as well as antiferromagnetic resonance shows the giant conversion efficiency. Polar asymmetry induced by the cycloidal spin order gives rise to this terahertz-photon-induced dc photocurrent, and no external magnetic and electric bias field are required for this conversion process. The observed phenomena are beyond the conventional photovoltaics in semi-classical regime and demonstrate the essential role of quantum geometrical aspect in low-energy optical processes. Our finding establishes a paradigm of terahertz photovoltaic phenomena, paving a way for terahertz photonic devices and energy harvesting.

4.
Commun Phys ; 7(1): 159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779470

RESUMEN

In helimagnetic metals, ac current-driven spin motions can generate emergent electric fields acting on conduction electrons, leading to emergent electromagnetic induction (EEMI). Recent experiments reveal the EEMI signal generally shows a strongly current-nonlinear response. In this study, we investigate the EEMI of Tb5Sb3, a short-period helimagnet. Using small angle neutron scattering we show that Tb5Sb3 hosts highly disordered helimagnetism with a distribution of spin-helix periodicity. The current-nonlinear dynamics of the disordered spin helix in Tb5Sb3 indeed shows up as the nonlinear electrical resistivity (real part of ac resistivity), and even more clearly as a nonlinear and huge EEMI (imaginary part of ac resistivity) response. The magnitude of the EEMI reaches as large as several tens of µH for Tb5Sb3 devices on the scale of several tens of µm, originating to noncollinear spin textures possibly even without long-range helimagnetic order.

5.
Nat Mater ; 23(7): 912-919, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38605196

RESUMEN

Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.

6.
Proc Natl Acad Sci U S A ; 121(12): e2316910121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483985

RESUMEN

Weyl semimetals resulting from either inversion (P) or time-reversal (T) symmetry breaking have been revealed to show the record-breaking large optical response due to intense Berry curvature of Weyl-node pairs. Different classes of Weyl semimetals with both P and T symmetry breaking potentially exhibit optical magnetoelectric (ME) responses, which are essentially distinct from the previously observed optical responses in conventional Weyl semimetals, leading to the versatile functions such as directional dependence for light propagation and gyrotropic effects. However, such optical ME phenomena of (semi)metallic systems have remained elusive so far. Here, we show the large nonlinear optical ME response in noncentrosymmetric magnetic Weyl semimetal PrAlGe, in which the polar structural asymmetry and ferromagnetic ordering break P and T symmetry. We observe the giant second harmonic generation (SHG) arising from the P symmetry breaking in the paramagnetic phase, being comparable to the largest SHG response reported in Weyl semimetal TaAs. In the ferromagnetically ordered phase, it is found that interference between this nonmagnetic SHG and the magnetically induced SHG emerging due to both P and T symmetry breaking results in the magnetic field switching of SHG intensity. Furthermore, such an interference effect critically depends on the light-propagating direction. The corresponding magnetically induced nonlinear susceptibility is significantly larger than the prototypical ME material, manifesting the existence of the strong nonlinear dynamical ME coupling. The present findings establish the unique optical functionality of P- and T-symmetry broken ME topological semimetals.

7.
Adv Mater ; 36(16): e2311737, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219021

RESUMEN

Topological magnetic (anti)skyrmions are robust string-like objects heralded as potential components in next-generation topological spintronics devices due to their low-energy manipulability via stimuli such as magnetic fields, heat, and electric/thermal current. While these 2D topological objects are widely studied, intrinsically 3D electron-spin real-space topology remains less explored despite its prevalence in bulky magnets. 2D-imaging studies reveal peculiar vortex-like contrast in the core regions of spin textures present in antiskyrmion-hosting thin plate magnets with S4 crystal symmetry, suggesting a more complex 3D real-space structure than the 2D model suggests. Here, holographic vector field electron tomography captures the 3D structure of antiskyrmions in a single-crystal, precision-doped (Fe0.63Ni0.3Pd0.07)3P (FNPP) lamellae at room temperature and zero field. These measurements reveal hybrid string-like solitons composed of skyrmions with topological number W = -1 on the lamellae's surfaces and an antiskyrmion (W = + 1) connecting them. High-resolution images uncover a Bloch point quadrupole (four magnetic (anti)monopoles that are undetectable in 2D imaging) which enables the observed lengthwise topological transitions. Numerical calculations corroborate the stability of hybrid strings over their conventional (anti)skyrmion counterparts. Hybrid strings result in topological tuning, a tunable topological Hall effect, and the suppression of skyrmion Hall motion, disrupting existing paradigms within spintronics.

8.
Adv Mater ; 36(1): e2306441, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712832

RESUMEN

The spontaneous formation and topological transitions of vortex-antivortex pairs have implications for a broad range of emergent phenomena, for example, from superconductivity to quantum computing. Unlike magnets exhibiting collinear spin textures, helimagnets with noncollinear spin textures provide unique opportunities to manipulate topological forms such as (anti)merons and (anti)skyrmions. However, it is challenging to achieve multiple topological states and their interconversion in a single helimagnet due to the topological protection for each state. Here, the on-demand creation of multiple topological states in a helimagnet Fe0.5 Co0.5 Ge, including a spontaneous vortex pair of meron with topological charge N = -1/2 and antimeron with N = 1/2, and a vortex-antivortex bundle, that is, a bimeron (meron pair) with N = -1 is reported. The mutual transformation between skyrmions and bimerons with respect to the competitive effects of magnetic field and magnetic shape anisotropy is demonstrated. It is shown that electric currents drive the individual bimerons to form their connecting assembly and then into a skyrmion lattice. These findings signify the feasibility of designing topological states and offer new insights into the manipulation of noncollinear spin textures for potential applications in various fields.

9.
Nat Mater ; 23(1): 79-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37957266

RESUMEN

Reservoir computing is a neuromorphic architecture that may offer viable solutions to the growing energy costs of machine learning. In software-based machine learning, computing performance can be readily reconfigured to suit different computational tasks by tuning hyperparameters. This critical functionality is missing in 'physical' reservoir computing schemes that exploit nonlinear and history-dependent responses of physical systems for data processing. Here we overcome this issue with a 'task-adaptive' approach to physical reservoir computing. By leveraging a thermodynamical phase space to reconfigure key reservoir properties, we optimize computational performance across a diverse task set. We use the spin-wave spectra of the chiral magnet Cu2OSeO3 that hosts skyrmion, conical and helical magnetic phases, providing on-demand access to different computational reservoir responses. The task-adaptive approach is applicable to a wide variety of physical systems, which we show in other chiral magnets via above (and near) room-temperature demonstrations in Co8.5Zn8.5Mn3 (and FeGe).

10.
Nat Commun ; 14(1): 8050, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052859

RESUMEN

Magnetic skyrmions, topological vortex-like spin textures, garner significant interest due to their unique properties and potential applications in nanotechnology. While they typically form a hexagonal crystal with distinct internal magnetisation textures known as Bloch- or Néel-type, recent theories suggest the possibility for direct transitions between skyrmion crystals of different lattice structures and internal textures. To date however, experimental evidence for these potentially useful phenomena have remained scarce. Here, we discover the polar tetragonal magnet EuNiGe3 to host two hybrid skyrmion phases, each with distinct internal textures characterised by anisotropic combinations of Bloch- and Néel-type windings. Variation of the magnetic field drives a direct transition between the two phases, with the modification of the hybrid texture concomitant with a hexagonal-to-square skyrmion crystal transformation. We explain these observations with a theory that includes the key ingredients of momentum-resolved Ruderman-Kittel-Kasuya-Yosida and Dzyaloshinskii-Moriya interactions that compete at the observed low symmetry magnetic skyrmion crystal wavevectors. Our findings underscore the potential of polar magnets with rich interaction schemes as promising for discovering new topological magnetic phases.

11.
Nat Commun ; 14(1): 7094, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925467

RESUMEN

The use of magnetic states in memory devices has a history dating back decades, and the experimental discovery of magnetic skyrmions and subsequent demonstrations of their control via magnetic fields, heat, and electric/thermal currents have ushered in a new era for spintronics research and development. Recent studies have experimentally discovered the antiskyrmion, the skyrmion's antiparticle, and while several host materials have been identified, control via thermal current remains elusive. In this work, we use thermal current to drive the transformation between skyrmions, antiskyrmions and non-topological bubbles, as well as the switching of helical states in the antiskyrmion-hosting ferromagnet (Fe0.63Ni0.3Pd0.07)3P at room temperature. We discover that a temperature gradient [Formula: see text] drives a transformation from antiskyrmions to non-topological bubbles to skyrmions while under a magnetic field and observe the opposite, unidirectional transformation from skyrmions to antiskyrmions at zero-field, suggesting that the antiskyrmion, more so than the skyrmion, is robustly metastable at zero field.

12.
Nat Commun ; 14(1): 6339, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816724

RESUMEN

The discovery of topological insulators and semimetals triggered enormous interest in exploring emergent electromagnetic responses in solids. Particular attention has been focused on ternary half-Heusler compounds, whose electronic structure bears analogy to the topological zinc-blende compounds while also including magnetic rare-earth ions coupled to conduction electrons. However, most of the research in this system has been in band-inverted zero-gap semiconductors such as GdPtBi, which still does not fully exhaust the large potential of this material class. Here, we report a less-studied member of half-Heusler compounds, HoAuSn, which we show is a trivial semimetal or narrow-gap semiconductor at zero magnetic field but undergoes a field-induced transition to a Weyl semimetal, with a negative magnetoresistance exceeding four orders of magnitude at low temperatures. The combined study of Shubnikov-de Haas oscillations and first-principles calculation suggests that the exchange field from Ho 4f moments reconstructs the band structure to induce Weyl points which play a key role in the strong suppression of large-angle carrier scattering. Our findings demonstrate the unique mechanism of colossal negative magnetoresistance and provide pathways towards realizing topological electronic states in a large class of magnetic half-Heusler compounds.

13.
Nat Commun ; 14(1): 5416, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669971

RESUMEN

The magnetic skyrmion is a spin-swirling topological object characterized by its nontrivial winding number, holding potential for next-generation spintronic devices. While optical readout has become increasingly important towards the high integration and ultrafast operation of those devices, the optical response of skyrmions has remained elusive. Here, we show the magneto-optical Kerr effect (MOKE) induced by the skyrmion formation, i.e., topological MOKE, in Gd2PdSi3. The significantly enhanced optical rotation found in the skyrmion phase demonstrates the emergence of topological MOKE, exemplifying the light-skyrmion interaction arising from the emergent gauge field. This gauge field in momentum space causes a dramatic reconstruction of the electronic band structure, giving rise to magneto-optical activity ranging up to the sub-eV region. The present findings pave a way for photonic technology based on skyrmionics.

14.
Sci Rep ; 13(1): 6876, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106004

RESUMEN

In some materials exhibiting field-induced first-order transitions (FOTs), the equilibrium phase-transition line is hidden by the hysteresis region associated with the FOT. In general, phase diagrams form the basis for the study of material science, and the profiles of phase-transition lines separating different thermodynamic phases include comprehensive information about thermodynamic quantities, such as latent heat. However, in a field-induced FOT, the equilibrium phase-transition line cannot be precisely determined from measurements of resistivity, magnetization, etc, especially when the transition is accompanied by large hysteresis. Here, we demonstrate a thermodynamics-based method for determining the hidden equilibrium FOT line in a material exhibiting a field-induced FOT. This method is verified for the field-induced FOT between antiferromagnetic and ferrimagnetic states in magneto-electric compounds ([Formula: see text]. The equilibrium FOT line determined based on the Clausius-Clapeyron equation exhibits a reasonable profile in terms of the third law of thermodynamics, and it shows marked differences from the midpoints of the hysteresis region. Our findings highlight that for a field-induced FOT exhibiting large hysteresis, care should be taken for referring to the hysteresis midpoint line when discussing field-induced latent heat or magnetocaloric effects.

15.
Phys Rev Lett ; 130(13): 136701, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37067304

RESUMEN

Dynamical spin fluctuations in magnets can be endowed with a slight bent toward left- or right-handed chirality by Dzyaloshinskii-Moriya interactions. However, little is known about the crucial role of lattice geometry on these chiral spin fluctuations and on fluctuation-related transport anomalies driven by the quantum-mechanical (Berry) phase of conduction electrons. Via thermoelectric Nernst effect and electric Hall effect experiments, we detect chiral spin fluctuations in the paramagnetic regime of a kagome lattice magnet; these signals are largely absent in a comparable triangular lattice magnet. Supported by Monte Carlo calculations, we identify lattices with at least two dissimilar plaquettes as most promising for Berry phase phenomena driven by thermal fluctuations in paramagnets.

16.
Adv Mater ; 35(20): e2210646, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36871172

RESUMEN

3D topological spin textures-hopfions-are predicted in helimagnetic systems but are not experimentally confirmed thus far. By utilizing an external magnetic field and electric current in the present study, 3D topological spin textures are realized, including fractional hopfions with nonzero topological index, in a skyrmion-hosting helimagnet FeGe. Microsecond current pulses are employed to control the dynamics of the expansion and contraction of a bundle composed of a skyrmion and a fractional hopfion, as well as its current-driven Hall motion. This research approach has demonstrated the novel electromagnetic properties of fractional hopfions and their ensembles in helimagnetic systems.

17.
Phys Rev Lett ; 130(3): 036801, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36763405

RESUMEN

Orbital degrees of freedom mediating an interaction between spin and lattice were predicted to raise strong magnetoelectric effect, i.e., to realize an efficient coupling between magnetic and ferroelectric orders. However, the effect of orbital fluctuations has been considered only in a few magnetoelectric materials, as orbital-degeneracy driven Jahn-Teller effect rarely couples to polarization. Here, we explore the spin-lattice coupling in multiferroic Swedenborgites with mixed valence and Jahn-Teller active transition metal ions on a stacked triangular and Kagome lattice using infrared and dielectric spectroscopy. On one hand, in CaBaM_{4}O_{7} (M=Co, Fe), we observe a strong magnetic-order-induced shift in the phonon frequencies and a corresponding large change in the dielectric response. Remarkably, as an unusual manifestation of the spin-phonon coupling, the spin fluctuations reduce the phonon lifetime by one order of magnitude at the magnetic phase transitions. On the other hand, lattice vibrations, dielectric response, and electric polarization show no variation at the Néel temperature of CaBaFe_{2}Co_{2}O_{7}, which is built up by orbital singlet ions. Our results provide a showcase for orbital degrees of freedom enhanced magnetoelectric coupling via the example of Swedenborgites.

18.
Adv Mater ; 35(3): e2206801, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36333884

RESUMEN

Strongly spin-orbit coupled states at metal interfaces, topological insulators, and 2D materials enable efficient electric control of spin states, offering great potential for spintronics. However, there are still materials challenges to overcome, including the integration into advanced silicon electronics and the scarce resources of constituent heavy elements of those materials. Through magneto-transport measurements and first-principles calculations, here robust spin-orbit coupling (SOC)-induced properties of a ferromagnetic topological surface state in FeSi and their controllability via hybridization with adjacent materials are demonstrated. In comparison to the case of its naturally oxidized surface, the ferromagnetic transition temperature is greatly increased beyond room temperature and the effective SOC strength is almost doubled at the surface in proximity to a wide-bandgap fluoride insulator. Those enhanced magnetic properties enable room-temperature magnetization switching, being applicable to spin-orbit torque based spintronic devices. Realization of strong SOC in the noble-metal-free silicon-based compound will accelerate spintronic applications.

19.
Sci Technol Adv Mater ; 23(1): 858-865, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518983

RESUMEN

The thermal conductivity above room temperature is investigated for LaCoO3-based materials showing spin-state and insulator-metal crossovers. A positive temperature coefficient (PTC) of the thermal conductivity is observed during the insulator-metal crossover around 500 K. Our analysis indicates that the phononic thermal transport is also enhanced in addition to the electronic contribution as the insulator-metal crossover takes place. The enhancement of the phononic component is ascribed to the reduction of the incoherent local lattice distortion coupled with the spin/orbital state of each Co3+ ion, which is induced by the enhanced spin-state fluctuation between low and excited spin-states. Moreover, fine tunability for the PTC of the thermal conductivity is demonstrated via doping hole-type carriers into LaCoO3. The observed enhancement ratio of the thermal conductivity κ T (773 K) / κ T (323 K) = 2.6 in La0.95Sr0.05CoO3 is the largest value among oxide materials which exhibit a PTC of their thermal conductivity above room temperature. The thermal rectification ratio is estimated to reach 61% for a hypothetical thermal diode consisting of La0.95Sr0.05CoO3 and LaGaO3, the latter of which is a typical band insulator. These results indicate that utilizing spin-state and orbital degrees of freedom in strongly correlated materials is a useful strategy for tuning thermal transport properties, especially for designing thermal diodes.

20.
Nano Lett ; 22(23): 9358-9364, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36383503

RESUMEN

Nanometric topological spin textures, such as skyrmions (Sks) and antiskyrmions (antiSks), have attracted much attention recently. However, most studies have focused on two-dimensional spin textures in films with inherent or synthetic antisymmetric spin-exchange interaction, termed Dzyaloshinskii-Moriya interaction, although three-dimensional (3D) topological spin textures, such as antiSks composed of alternating Bloch- and Néel-type spin spirals, chiral bobbers carrying emergent magnetic monopoles, and deformed Sk strings, are ubiquitous. To elucidate these textures, we have developed a 3D nanometric magnetic imaging technique, tomographic Lorentz transmission electron microscopy (TEM). The approach enables the visualization of the 3D shape of magnetic objects and their 3D vector field mapping. Here we report 3D vector field maps of deformed Sk-strings and antiSk using the technique. This research approach will lead to discoveries and understanding of fertile 3D magnetic structures in a broad class of magnets, providing insight into 3D topological magnetism.


Asunto(s)
Imagenología Tridimensional , Imanes , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...