Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180615

RESUMEN

Microcephaly is characterized by an occipitofrontal circumference at least two standard deviations below the mean for age and sex. Neurodevelopmental disorders (NDD) are commonly associated with microcephaly, due to perturbations in brain development and functioning. Given the extensive genetic heterogeneity of microcephaly, managing patients is hindered by the broad spectrum of diagnostic possibilities that exist before conducting molecular testing. We investigated the genetic basis of syndromic microcephaly accompanied by NDD in a Brazilian cohort of 45 individuals and characterized associated clinical features, as well as evaluated the effectiveness of whole-exome sequencing (WES) as a diagnostic tool for this condition. Patients previously negative for pathogenic copy number variants underwent WES, which was performed using a trio approach for isolated index cases (n = 31), only the index in isolated cases with parental consanguinity (n = 8) or affected siblings in familial cases (n = 3). Pathogenic/likely pathogenic variants were identified in 19 families (18 genes) with a diagnostic yield of approximately 45%. Nearly 86% of the individuals had global developmental delay/intellectual disability and 51% presented with behavioral disturbances. Additional frequent clinical features included facial dysmorphisms (80%), brain malformations (67%), musculoskeletal (71%) or cardiovascular (47%) defects, and short stature (54%). Our findings unraveled the underlying genetic basis of microcephaly in half of the patients, demonstrating a high diagnostic yield of WES for microcephaly and reinforcing its genetic heterogeneity. We expanded the phenotypic spectrum associated with the condition and identified a potentially novel gene (CCDC17) for congenital microcephaly.

2.
Am J Med Genet A ; 194(3): e63468, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37937525

RESUMEN

Primary microcephaly (MCPH) is an autosomal recessive disorder characterized by head circumference of at least two standard deviations below the mean. Biallelic variants in the kinetochore gene KNL1 is a known cause of MCPH4. KNL1 is the central component of the KNL1-MIS12-NSL1 (KMN) network, which acts as the signaling hub of the kinetochore and is required for correct chromosomal segregation during mitosis. We identified biallelic KNL1 variants in two siblings from a non-consanguineous family with microcephaly and intellectual disability. The two siblings carry a frameshift variant predicted to prematurely truncate the transcript and undergo nonsense mediated decay, and an intronic single nucleotide variant (SNV) predicted to disrupt splicing. An in vitro splicing assay and qPCR from blood-derived RNA confirmed that the intronic variant skips exon 23, significantly reducing levels of the canonical transcript. Protein modeling confirmed that absence of exon 23, an inframe exon, would disrupt a key interaction within the KMN network and likely destabilize the kinetochore signaling hub, disrupting mitosis. Therefore, this splicing variant is pathogenic and, in trans with a frameshift variant, causes the MCPH phenotype associated with KLN1. This finding furthers the association of splicing variants as a common pathogenic variant class for KNL1.


Asunto(s)
Cinetocoros , Microcefalia , Humanos , Proteínas de Ciclo Celular/genética , Cinetocoros/metabolismo , Cinetocoros/patología , Microcefalia/genética , Microcefalia/patología , Proteínas Asociadas a Microtúbulos/genética , Mutación
3.
J Autism Dev Disord ; 2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36502452

RESUMEN

Microcephaly presents heterogeneous genetic etiology linked to several neurodevelopmental disorders (NDD). Copy number variants (CNVs) are a causal mechanism of microcephaly whose investigation is a crucial step for unraveling its molecular basis. Our purpose was to investigate the burden of rare CNVs in microcephalic individuals and to review genes and CNV syndromes associated with microcephaly. We performed chromosomal microarray analysis (CMA) in 185 Brazilian patients with microcephaly and evaluated microcephalic patients carrying < 200 kb CNVs documented in the DECIPHER database. Additionally, we reviewed known genes and CNV syndromes causally linked to microcephaly through the PubMed, OMIM, DECIPHER, and ClinGen databases. Rare clinically relevant CNVs were detected in 39 out of the 185 Brazilian patients investigated by CMA (21%). In 31 among the 60 DECIPHER patients carrying < 200 kb CNVs, at least one known microcephaly gene was observed. Overall, four gene sets implicated in microcephaly were disclosed: known microcephaly genes; genes with supporting evidence of association with microcephaly; known macrocephaly genes; and novel candidates, including OTUD7A, BBC3, CNTN6, and NAA15. In the review, we compiled 957 known microcephaly genes and 58 genomic CNV loci, comprising 13 duplications and 50 deletions, which have already been associated with clinical findings including microcephaly. We reviewed genes and CNV syndromes previously associated with microcephaly, reinforced the high CMA diagnostic yield for this condition, pinpointed novel candidate loci linked to microcephaly deserving further evaluation, and provided a useful resource for future research on the field of neurodevelopment.

4.
Genes (Basel) ; 13(12)2022 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-36553552

RESUMEN

Macrocephaly frequently occurs in single-gene disorders affecting the PI3K-AKT-MTOR pathway; however, epigenetic mutations, mosaicism, and copy number variations (CNVs) are emerging relevant causative factors, revealing a higher genetic heterogeneity than previously expected. The aim of this study was to investigate the role of rare CNVs in patients with macrocephaly and review genomic loci and known genes. We retrieved from the DECIPHER database de novo <500 kb CNVs reported on patients with macrocephaly; in four cases, a candidate gene for macrocephaly could be pinpointed: a known microcephaly gene-TRAPPC9, and three genes based on their functional roles-RALGAPB, RBMS3, and ZDHHC14. From the literature review, 28 pathogenic CNV genomic loci and over 300 known genes linked to macrocephaly were gathered. Among the genomic regions, 17 CNV loci (~61%) exhibited mirror phenotypes, that is, deletions and duplications having opposite effects on head size. Identifying structural variants affecting head size can be a preeminent source of information about pathways underlying brain development. In this study, we reviewed these genes and recurrent CNV loci associated with macrocephaly, as well as suggested novel potential candidate genes deserving further studies to endorse their involvement with this phenotype.


Asunto(s)
Variaciones en el Número de Copia de ADN , Megalencefalia , Humanos , Variaciones en el Número de Copia de ADN/genética , Fosfatidilinositol 3-Quinasas/genética , Genoma , Genómica , Megalencefalia/genética
6.
Int J Mol Cell Med ; 9(4): 296-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33688487

RESUMEN

17p13.3 microduplications are rare copy number variations (CNVs) associated with variable phenotypes, including facial dysmorphism, developmental delay, intellectual disability, and autism. Typically, when a recognized pathogenic CNV is identified, other genetic factors are not considered. We investigated via whole-exome sequencing the presence of additional variants in four carriers of class I 17p13.3 microduplications. A 730 kb 17p13.3 microduplication was identified in two half-brothers with intellectual disability, but not in a third affected half-brother or blood cells from their normal mother (Family A), thus leading to the hypothesis of maternal germline mosaicism. No additional pathogenic variants were detected in Family A. Two affected siblings carried maternally inherited 450 kb 17p13.3 microduplication (Family B); the three carriers of the microduplication exhibited microcephaly and learning disability/speech impairment of variable degrees. Exome analysis revealed a variant of uncertain significance in RORA, a gene already linked to autism, in the autistic boy; his sister was heterozygous for a CYP1B1 pathogenic variant that could be related to her congenital glaucoma. Besides, both siblings carried a loss-of-function variant in DIP2B, a candidate gene for intellectual disability, which was inherited from their father, who also exhibited learning disability in childhood. In conclusion, additional pathogenic variants were revealed in two affected carriers of class I 17p13.3 microduplication (Family B), probably adding to their phenotypes. These results provided new evidence regarding the contribution of RORA and DIP2B to neurocognitive deficits, and highlighted the importance of full genetic investigation in carriers of CNV syndromes with variable expressivity. Finally, we suggest that microcephaly may be a rare clinical feature also related to the presence of the class I 17p13.3 microduplication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA