Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arthritis Res Ther ; 26(1): 33, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254142

RESUMEN

BACKGROUND: Emerging evidence suggests that extracellular vesicles (EVs) can play roles in inflammatory processes and joint degradation in primary osteoarthritis (OA), a common age-associated joint disease. EV subpopulations express tetraspanins and platelet markers that may reflect OA pathogenesis. The present study investigated the associations between these EV surface markers and articular cartilage degradation, subjectively and objectively assessed pain, and functional limitations in primary knee OA (KOA). METHODS: Serum EVs were determined by high-sensitivity flow cytometry (large CD61+ EVs) and single particle interferometric reflectance imaging sensor (small CD41+, CD63+, CD81+, and CD9+ EVs) from end-stage KOA patients and controls (n = 8 per group). Knee pain and physical functions were assessed with several health- and pain-related questionnaires, established measurements of physical medicine, and neuromuscular examination. The obtained data were analyzed using supervised and unsupervised univariate and multivariate models. RESULTS: With the combined dataset of cartilage thickness, knee function, pain, sensation, and EV molecular signatures, we identified highly correlated groups of variables and found several EV markers that were statistically significant predictors of pain, physical limitations, and other aspects of well-being for KOA patients, for instance CD41+/CD63+/CD9+ small EVs associated with the range of motion of the knee, physical performance, and pain sensitivity. CONCLUSIONS: Particular serum EV subpopulations showed clear associations with KOA pain and functional limitations, suggesting that their implications in OA pathophysiology warrant further study.


Asunto(s)
Vesículas Extracelulares , Osteoartritis de la Rodilla , Humanos , Percepción del Dolor , Dolor , Articulación de la Rodilla
2.
Cancer Cell Int ; 24(1): 29, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218884

RESUMEN

PURPOSE: Platinum-based drugs are cytotoxic drugs commonly used in cancer treatment. They cause DNA damage, effects of which on chromatin and cellular responses are relatively well described. Yet, the nuclear stress responses related to RNA processing are incompletely known and may be relevant for the heterogeneity with which cancer cells respond to these drugs. Here, we determine the type and extent of nuclear stress responses of prostate cancer cells to clinically relevant platinum drugs. METHODS: We study nucleolar and Cajal body (CB) responses to cisplatin, carboplatin, and oxaliplatin with immunofluorescence-based methods in prostate cancer cells. We utilize organelle-specific markers NPM, Fibrillarin, Coilin, and SMN1, and study CB-regulatory proteins FUS and TDP-43 using siRNA-mediated downregulation. RESULTS: Different types of prostate cancer cells have different sensitivities to platinum drugs. With equally cytotoxic doses, cisplatin, and oxaliplatin induce prominent nucleolar and CB stress responses while the nuclear stress phenotypes to carboplatin are milder. We find that Coilin is a stress-specific marker for platinum drug response heterogeneity. We also find that CB-associated, stress-responsive RNA binding proteins FUS and TDP-43 control Coilin and CB biology in prostate cancer cells and, further, that TDP-43 is associated with stress-responsive CBs in prostate cancer cells. CONCLUSION: Our findings provide insight into the heterologous responses of prostate cancer cells to different platinum drug treatments and indicate Coilin and TDP-43 as stress mediators in the varied outcomes. These results help understand cancer drug responses at a cellular level and have implications in tackling heterogeneity in cancer treatment outcomes.

3.
Curr Opin Struct Biol ; 82: 102673, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37595512

RESUMEN

Quantitative characterization of protein abundance and interactions in live cells is necessary to understand and predict cellular behavior. The accurate determination of copy number for individual proteins and heterologous complexes in individual cells is critical because small changes in protein dosage, often less than two-fold, can have strong phenotypic consequences. Here, we review the merits and pitfalls of different quantitative fluorescence imaging methods for single-cell determination of protein abundance, localization, interactions, and dynamics. In particular, we discuss how scanning number and brightness (sN&B) and its variation, Raster scanning image correlation spectroscopy (RICS), exploit stochastic noise in small measurement volumes to quantify protein abundance, stoichiometry, and dynamics with high accuracy.


Asunto(s)
Imagen Óptica , Diferenciación Celular
4.
Sci Rep ; 13(1): 9821, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330591

RESUMEN

Equine asthma (EA) is an inflammatory disease of the lower airways driven by mediators released from cells. Extracellular vesicles (EVs) are vehicles for lipid mediators, which possess either pro-inflammatory or dual anti-inflammatory and pro-resolving functions. In this study, we investigated how the respiratory fatty acid (FA) profile reflects airway inflammatory status. The FA composition of bronchoalveolar lavage fluid (BALF), BALF supernatant, and bronchoalveolar EVs of healthy horses (n = 15) and horses with mild/moderate EA (n = 10) or severe EA (SEA, n = 5) was determined with gas chromatography and mass spectrometry. The FA profiles distinguished samples with different diagnoses in all sample types, yet they were insufficient to predict the health status of uncategorized samples. Different individual FAs were responsible for the discrimination of the diagnoses in different sample types. Particularly, in the EVs of SEA horses the proportions of palmitic acid (16:0) decreased and those of eicosapentaenoic acid (20:5n-3) increased, and all sample types of asthmatic horses had elevated dihomo-γ-linolenic acid (20:3n-6) proportions. The results suggest simultaneous pro-inflammatory and resolving actions of FAs and a potential role for EVs as vehicles for lipid mediators in asthma pathogenesis. EV lipid manifestations of EA can offer translational targets to study asthma pathophysiology and treatment options.


Asunto(s)
Asma , Vesículas Extracelulares , Enfermedades de los Caballos , Animales , Caballos , Líquido del Lavado Bronquioalveolar/química , Ácidos Grasos , Cromatografía de Gases y Espectrometría de Masas , Asma/diagnóstico , Asma/veterinaria , Enfermedades de los Caballos/diagnóstico , Lavado Broncoalveolar
5.
Inflammation ; 46(4): 1396-1413, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37140681

RESUMEN

Emerging evidence suggests that fatty acids (FAs) and their lipid mediator derivatives can induce both beneficial and detrimental effects on inflammatory processes and joint degradation in osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA). The present study characterized the detailed FA signatures of synovial membranes collected during knee replacement surgery of age- and gender-matched OA and RA patients (n = 8/diagnosis). The FA composition of total lipids was determined by gas chromatography and analyzed with univariate and multivariate methods supplemented with hierarchical clustering (HC), random forest (RF)-based classification of FA signatures, and FA metabolism pathway analysis. RA synovium lipids were characterized by reduced proportions of shorter-chain saturated FAs (SFAs) and elevated percentages of longer-chain SFAs and monounsaturated FAs, alkenyl chains, and C20 n-6 polyunsaturated FAs compared to OA synovium lipids. In HC, FAs and FA-derived variables clustered into distinct groups, which preserved the discriminatory power of the individual variables in predicting the RA and OA inflammatory states. In RF classification, SFAs and 20:3n-6 were among the most important FAs distinguishing RA and OA. Pathway analysis suggested that elongation reactions of particular long-chain FAs would have increased relevance in RA. The present study was able to determine the individual FAs, FA groups, and pathways that distinguished the more inflammatory RA from OA. The findings suggest modifications of FA elongation and metabolism of 20:4n-6, glycerophospholipids, sphingolipids, and plasmalogens in the chronically inflamed RA synovium. These FA alterations could have implications in lipid mediator synthesis and potential as novel diagnostic and therapeutic tools.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Humanos , Líquido Sinovial/química , Membrana Sinovial/metabolismo , Artritis Reumatoide/metabolismo , Osteoartritis/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Ácidos Grasos , Ácidos Grasos Insaturados/metabolismo
6.
Sci Rep ; 13(1): 3868, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890145

RESUMEN

Understanding the molecular pathology of neurodevelopmental disorders should aid the development of therapies for these conditions. In MeCP2 duplication syndrome (MDS)-a severe autism spectrum disorder-neuronal dysfunction is caused by increased levels of MeCP2. MeCP2 is a nuclear protein that binds to methylated DNA and recruits the nuclear co-repressor (NCoR) complex to chromatin via an interaction with the WD repeat-containing proteins TBL1 and TBLR1. The peptide motif in MeCP2 that binds to TBL1/TBLR1 is essential for the toxicity of excess MeCP2 in animal models of MDS, suggesting that small molecules capable of disrupting this interaction might be useful therapeutically. To facilitate the search for such compounds, we devised a simple and scalable NanoLuc luciferase complementation assay for measuring the interaction of MeCP2 with TBL1/TBLR1. The assay allowed excellent separation between positive and negative controls, and had low signal variance (Z-factor = 0.85). We interrogated compound libraries using this assay in combination with a counter-screen based on luciferase complementation by the two subunits of protein kinase A (PKA). Using this dual screening approach, we identified candidate inhibitors of the interaction between MeCP2 and TBL1/TBLR1. This work demonstrates the feasibility of future screens of large compound collections, which we anticipate will enable the development of small molecule therapeutics to ameliorate MDS.


Asunto(s)
Trastorno del Espectro Autista , Receptores Citoplasmáticos y Nucleares , Animales , Proteínas Represoras/genética , Luminiscencia , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteínas Nucleares/metabolismo
7.
Cells ; 13(1)2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201261

RESUMEN

Increased nuclear size correlates with lower survival rates and higher grades for prostate cancer. The short-chain dehydrogenase/reductase (SDR) family member DHRS7 was suggested as a biomarker for use in prostate cancer grading because it is largely lost in higher-grade tumors. Here, we found that reduction in DHRS7 from the LNCaP prostate cancer cell line with normally high levels of DHRS7 increases nuclear size, potentially explaining the nuclear size increase observed in higher-grade prostate tumors where it is lost. An exogenous expression of DHRS7 in the PC3 prostate cancer cell line with normally low DHRS7 levels correspondingly decreases nuclear size. We separately tested 80 compounds from the Microsource Spectrum library for their ability to restore normal smaller nuclear size to PC3 cells, finding that estradiol propionate had the same effect as the re-expression of DHRS7 in PC3 cells. However, the drug had no effect on LNCaP cells or PC3 cells re-expressing DHRS7. We speculate that separately reported beneficial effects of estrogens in androgen-independent prostate cancer may only occur with the loss of DHRS7/ increased nuclear size, and thus propose DHRS7 levels and nuclear size as potential biomarkers for the likely effectiveness of estrogen-based treatments.


Asunto(s)
Estradiol , Neoplasias de la Próstata , Masculino , Humanos , Estradiol/farmacología , Propionatos , Neoplasias de la Próstata/tratamiento farmacológico , Próstata , Estrógenos , Oxidorreductasas
8.
Front Cell Dev Biol ; 10: 1022723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299481

RESUMEN

Research on metastasis has recently regained considerable interest with the hope that single cell technologies might reveal the most critical changes that support tumor spread. However, it is possible that part of the answer has been visible through the microscope for close to 200 years. Changes in nuclear size characteristically occur in many cancer types when the cells metastasize. This was initially discarded as contributing to the metastatic spread because, depending on tumor types, both increases and decreases in nuclear size could correlate with increased metastasis. However, recent work on nuclear mechanics and the connectivity between chromatin, the nucleoskeleton, and the cytoskeleton indicate that changes in this connectivity can have profound impacts on cell mobility and invasiveness. Critically, a recent study found that reversing tumor type-dependent nuclear size changes correlated with reduced cell migration and invasion. Accordingly, it seems appropriate to now revisit possible contributory roles of nuclear size changes to metastasis.

9.
BMC Res Notes ; 15(1): 248, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841111

RESUMEN

OBJECTIVES: While it is clear that cells need to grow before committing to division at the G1/S transition of the cell cycle, how cells sense their growth rate or size at the molecular level is unknown. It has been proposed that, in budding yeast, the dilution of the Whi5 G1/S transcriptional repressor as cells grow in G1 is the main driver of G1/S commitment. This model implies that Whi5 synthesis is substantially reduced in G1 phase. Recent work has reported that the concentration of Whi5 is size- and time-independent in G1 cells, challenging the dilution model. These results in turn imply that Whi5 must be synthesized in G1 phase, but the cell cycle dependence of WHI5 mRNA expression has not been examined in live cells. RESULTS DESCRIPTION: To address this question, we monitored single WHI5 mRNA molecules in single live cells using confocal microscopy, and quantified WHI5 mRNA copy number in G1, G1/S, and S/G2/M phase cells. We observed that WHI5 mRNA is found in very similar amount irrespective of cell cycle stage. The constant WHI5 mRNA copy number throughout G1 phase rules out alterations in mRNA abundance as a contributing factor for any putative dilution of Whi5.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ciclo Celular/fisiología , División Celular/fisiología , Ciclinas/genética , Ciclinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Front Oncol ; 12: 869417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574334

RESUMEN

Invasion of tumor cells through the stroma is coordinated in response to migratory cues provided by the extracellular environment. One of the most abundant molecules in the tumor microenvironment is hyaluronan, a glycosaminoglycan known to promote many hallmarks of tumor progression, including the migratory potential of tumor cells. Strikingly, hyaluronan is also often found to coat extracellular vesicles (EVs) that originate from plasma membrane tentacles of tumor cells crucial for migration, such as filopodia, and are abundant in tumor niches. Thus, it is possible that hyaluronan and hyaluronan-coated EVs have a cooperative role in promoting migration. In this work, we compared the hyaluronan synthesis, EV secretion and migratory behavior of normal and aggressive breast cell lines from MCF10 series. Single live cell confocal imaging, electron microscopy and correlative light and electron microscopy experiments revealed that migrating tumor cells form EV-rich and hyaluronan -coated trails. These trails promote the pathfinding behavior of follower cells, which is dependent on hyaluronan. Specifically, we demonstrated that plasma membrane protrusions and EVs left behind by tumor cells during migration are strongly positive for CD9. Single cell tracking demonstrated a leader-follower behavior, which was significantly decreased upon removal of pericellular hyaluronan, indicating that hyaluronan promotes the pathfinding behavior of follower cells. Chick chorioallantoic membrane assays in ovo suggest that tumor cells behave similarly in 3D conditions. This study strengthens the important role of extracellular matrix production and architecture in coordinated tumor cell movements and validates the role of EVs as important components and regulators of tumor matrix. The results suggest that tumor cells can modify the extracellular niche by forming trails, which they subsequently follow coordinatively. Future studies will clarify in more detail the orchestrated role of hyaluronan, EVs and other extracellular cues in coordinated migration and pathfinding behavior of follower cells.

12.
J Prev Med Public Health ; 55(2): 134-143, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35391525

RESUMEN

OBJECTIVES: Many governments have imposed-and are still imposing-mobility restrictions to contain the coronavirus disease 2019 (COVID-19) pandemic. However, there is no consensus on whether policy-induced reductions of human mobility effectively reduce the effective reproduction number (Rt) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies based on country-restricted data reported conflicting trends in the change of the SARS-CoV-2 Rt following mobility restrictions. The objective of this study was to examine, at the global scale, the existence of regional specificities in the correlations between Rt and human mobility. METHODS: We computed the Rt of SARS-CoV-2 using data on worldwide infection cases reported by the Johns Hopkins University, and analyzed the correlation between Rt and mobility indicators from the Google COVID-19 Community Mobility Reports in 125 countries, as well as states/regions within the United States, using the Pearson correlation test, linear modeling, and quadratic modeling. RESULTS: The correlation analysis identified countries where Rt negatively correlated with residential mobility, as expected by policymakers, but also countries where Rt positively correlated with residential mobility and countries with more complex correlation patterns. The correlations between Rt and residential mobility were non-linear in many countries, indicating an optimal level above which increasing residential mobility is counterproductive. CONCLUSIONS: Our results indicate that, in order to effectively reduce viral circulation, mobility restriction measures must be tailored by region, considering local cultural determinants and social behaviors. We believe that our results have the potential to guide differential refinement of mobility restriction policies at a country/regional resolution.


Asunto(s)
COVID-19 , SARS-CoV-2 , Número Básico de Reproducción , COVID-19/epidemiología , Humanos , Pandemias/prevención & control , Estados Unidos
13.
PLoS Biol ; 20(3): e3001548, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35239649

RESUMEN

Commitment to cell division at the end of G1 phase, termed Start in the budding yeast Saccharomyces cerevisiae, is strongly influenced by nutrient availability. To identify new dominant activators of Start that might operate under different nutrient conditions, we screened a genome-wide ORF overexpression library for genes that bypass a Start arrest caused by absence of the G1 cyclin Cln3 and the transcriptional activator Bck2. We recovered a hypothetical gene YLR053c, renamed NRS1 for Nitrogen-Responsive Start regulator 1, which encodes a poorly characterized 108 amino acid microprotein. Endogenous Nrs1 was nuclear-localized, restricted to poor nitrogen conditions, induced upon TORC1 inhibition, and cell cycle-regulated with a peak at Start. NRS1 interacted genetically with SWI4 and SWI6, which encode subunits of the main G1/S transcription factor complex SBF. Correspondingly, Nrs1 physically interacted with Swi4 and Swi6 and was localized to G1/S promoter DNA. Nrs1 exhibited inherent transactivation activity, and fusion of Nrs1 to the SBF inhibitor Whi5 was sufficient to suppress other Start defects. Nrs1 appears to be a recently evolved microprotein that rewires the G1/S transcriptional machinery under poor nitrogen conditions.


Asunto(s)
Fase G1/genética , Regulación Fúngica de la Expresión Génica , Nitrógeno/metabolismo , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , División Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Immunoblotting , Unión Proteica , RNA-Seq/métodos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
ACS Chem Biol ; 17(3): 680-700, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35199530

RESUMEN

Background: Lower survival rates for many cancer types correlate with changes in nuclear size/scaling in a tumor-type/tissue-specific manner. Hypothesizing that such changes might confer an advantage to tumor cells, we aimed at the identification of commercially available compounds to guide further mechanistic studies. We therefore screened for Food and Drug Administration (FDA)/European Medicines Agency (EMA)-approved compounds that reverse the direction of characteristic tumor nuclear size changes in PC3, HCT116, and H1299 cell lines reflecting, respectively, prostate adenocarcinoma, colonic adenocarcinoma, and small-cell squamous lung cancer. Results: We found distinct, largely nonoverlapping sets of compounds that rectify nuclear size changes for each tumor cell line. Several classes of compounds including, e.g., serotonin uptake inhibitors, cyclo-oxygenase inhibitors, ß-adrenergic receptor agonists, and Na+/K+ ATPase inhibitors, displayed coherent nuclear size phenotypes focused on a particular cell line or across cell lines and treatment conditions. Several compounds from classes far afield from current chemotherapy regimens were also identified. Seven nuclear size-rectifying compounds selected for further investigation all inhibited cell migration and/or invasion. Conclusions: Our study provides (a) proof of concept that nuclear size might be a valuable target to reduce cell migration/invasion in cancer treatment and (b) the most thorough collection of tool compounds to date reversing nuclear size changes specific to individual cancer-type cell lines. Although these compounds still need to be tested in primary cancer cells, the cell line-specific nuclear size and migration/invasion responses to particular drug classes suggest that cancer type-specific nuclear size rectifiers may help reduce metastatic spread.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Línea Celular Tumoral , Movimiento Celular , Humanos , Masculino , Invasividad Neoplásica/genética , Invasividad Neoplásica/prevención & control , Neoplasias de la Próstata/tratamiento farmacológico
15.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32744610

RESUMEN

In budding yeast, the transcription factors SBF and MBF activate a large program of gene expression in late G1 phase that underlies commitment to cell division, termed Start. SBF/MBF are limiting with respect to target promoters in small G1 phase cells and accumulate as cells grow, raising the questions of how SBF/MBF are dynamically distributed across the G1/S regulon and how this impacts the Start transition. Super-resolution Photo-Activatable Localization Microscopy (PALM) mapping of the static positions of SBF/MBF subunits in fixed cells revealed each transcription factor was organized into discrete clusters containing approximately eight copies regardless of cell size and that the total number of clusters increased as cells grew through G1 phase. Stochastic modeling using reasonable biophysical parameters recapitulated growth-dependent SBF/MBF clustering and predicted TF dynamics that were confirmed in live cell PALM experiments. This spatio-temporal organization of SBF/MBF may help coordinate activation of G1/S regulon and the Start transition.


Asunto(s)
Fase G1/genética , Fase S/genética , Factores de Transcripción/genética , División Celular/genética , Regulación Fúngica de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética
16.
Genetics ; 214(4): 1103-1120, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32094149

RESUMEN

Systematic genetic interaction profiles can reveal the mechanisms-of-action of bioactive compounds. The imipridone ONC201, which is currently in cancer clinical trials, has been ascribed a variety of different targets. To investigate the genetic dependencies of imipridone action, we screened a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) knockout library in the presence of either ONC201 or its more potent analog ONC212. Loss of the mitochondrial matrix protease CLPP or the mitochondrial intermediate peptidase MIPEP conferred strong resistance to both compounds. Biochemical and surrogate genetic assays showed that impridones directly activate CLPP and that MIPEP is necessary for proteolytic maturation of CLPP into a catalytically competent form. Quantitative proteomic analysis of cells treated with ONC212 revealed degradation of many mitochondrial as well as nonmitochondrial proteins. Prompted by the conservation of ClpP from bacteria to humans, we found that the imipridones also activate ClpP from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus in biochemical and genetic assays. ONC212 and acyldepsipeptide-4 (ADEP4), a known activator of bacterial ClpP, caused similar proteome-wide degradation profiles in S. aureus ONC212 suppressed the proliferation of a number of Gram-positive (S. aureus, B. subtilis, and Enterococcus faecium) and Gram-negative species (E. coli and Neisseria gonorrhoeae). Moreover, ONC212 enhanced the ability of rifampin to eradicate antibiotic-tolerant S. aureus persister cells. These results reveal the genetic dependencies of imipridone action in human cells and identify the imipridone scaffold as a new entry point for antibiotic development.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/agonistas , Imidazoles/farmacología , Proteolisis , Piridinas/farmacología , Pirimidinas/farmacología , Bacillus subtilis/efectos de los fármacos , Sitios de Unión , Secuencia Conservada , Depsipéptidos/metabolismo , Endopeptidasa Clp/química , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Metaloendopeptidasas/metabolismo , Unión Proteica , Rifampin/farmacología , Staphylococcus aureus/efectos de los fármacos
17.
Cell Syst ; 6(5): 539-554.e11, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29792825

RESUMEN

To understand how commitment to cell division in late G1 phase (Start) is controlled by growth and nutrients in budding yeast, we determined the absolute concentrations of the G1/S transcription factors SBF (composed of Swi4 and Swi6) and MBF (composed of Mbp1 and Swi6), the transcriptional repressor Whi5, and the G1 cyclins, Cln1 and Cln2, in single live yeast cells using scanning number and brightness (sN&B) microscopy. In rich medium, Whi5, Mbp1, and Swi6 concentrations were independent of cell size, whereas Swi4 concentration doubled in G1 phase, leading to a size-dependent decrease in the Whi5/Swi4 ratio. In small cells, SBF and MBF copy numbers were insufficient to saturate target G1/S promoters, but this restriction diminished as cells grew in size. In poor medium, SBF and MBF subunits, as well as Cln1, were elevated, consistent with a smaller cell size at Start. A mathematical model constrained by sN&B data suggested that size- and nutrient-dependent occupancy of G1/S promoters by SBF/MBF helps set the cell size threshold for Start activation.


Asunto(s)
División Celular/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Ciclo Celular , Puntos de Control del Ciclo Celular , División Celular/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Ciclina G1/metabolismo , Ciclinas/genética , Variaciones en el Número de Copia de ADN/genética , Proteínas de Unión al ADN/metabolismo , Fase G1 , Puntos de Control de la Fase G1 del Ciclo Celular , Regulación Fúngica de la Expresión Génica/genética , Modelos Teóricos , Regiones Promotoras Genéticas/genética , Unión Proteica , Fase S , Puntos de Control de la Fase S del Ciclo Celular , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética
18.
Mol Cell ; 69(4): 664-676.e5, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452641

RESUMEN

The morphological transformation of amorphous chromatin into distinct chromosomes is a hallmark of mitosis. To achieve this, chromatin must be compacted and remodeled by a ring-shaped enzyme complex known as condensin. However, the mechanistic basis underpinning condensin's role in chromosome remodeling has remained elusive. Here we show that condensin has a strong tendency to trap itself in its own reaction product during chromatin compaction and yet is capable of interacting with chromatin in a highly dynamic manner in vivo. To resolve this apparent paradox, we identified specific chromatin remodelers and AAA-class ATPases that act in a coordinated manner to release condensin from chromatin entrapment. The Cdc48 segregase is the central linchpin of this regulatory mechanism and promotes ubiquitin-dependent cycling of condensin on mitotic chromatin as well as effective chromosome condensation. Collectively, our results show that condensin inhibition by its own reaction product is relieved by forceful enzyme extraction from chromatin.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitosis , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína que Contiene Valosina/metabolismo , Adenosina Trifosfatasas/genética , Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/genética , Morfogénesis , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteína que Contiene Valosina/genética
19.
Mol Biol Cell ; 27(12): 1875-84, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27122604

RESUMEN

Like other eukaryotes, Saccharomyces cerevisiae spatially organizes its chromosomes within the nucleus. In G1 phase, the yeast's 32 telomeres are clustered into 6-10 foci that dynamically interact with the nuclear membrane. Here we show that, when cells leave the division cycle and enter quiescence, telomeres gather into two to three hyperclusters at the nuclear membrane vicinity. This localization depends on Esc1 but not on the Ku proteins. Telomere hypercluster formation requires the Sir complex but is independent of the nuclear microtubule bundle that specifically assembles in quiescent cells. Importantly, mutants deleted for the linker histone H1 Hho1 or defective in condensin activity or affected for histone H4 Lys-16 deacetylation are impaired, at least in part, for telomere hypercluster formation in quiescence, suggesting that this process involves chromosome condensation. Finally, we establish that telomere hypercluster formation is not necessary for quiescence establishment, maintenance, and exit, raising the question of the physiological raison d'être of this nuclear reorganization.


Asunto(s)
Telómero/metabolismo , Telómero/fisiología , Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , Cromatina/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Proteínas de Unión al ADN/metabolismo , Fase G1 , Heterocromatina/metabolismo , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
20.
Mol Biol Cell ; 26(13): 2519-34, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25947137

RESUMEN

The coupling of endocytosis and exocytosis underlies fundamental biological processes ranging from fertilization to neuronal activity and cellular polarity. However, the mechanisms governing the spatial organization of endocytosis and exocytosis require clarification. Using a quantitative imaging-based screen in budding yeast, we identified 89 mutants displaying defects in the localization of either one or both pathways. High-resolution single-vesicle tracking revealed that the endocytic and exocytic mutants she4∆ and bud6∆ alter post-Golgi vesicle dynamics in opposite ways. The endocytic and exocytic pathways display strong interdependence during polarity establishment while being more independent during polarity maintenance. Systems analysis identified the exocyst complex as a key network hub, rich in genetic interactions with endocytic and exocytic components. Exocyst mutants displayed altered endocytic and post-Golgi vesicle dynamics and interspersed endocytic and exocytic domains compared with control cells. These data are consistent with an important role for the exocyst in coordinating endocytosis and exocytosis.


Asunto(s)
Endocitosis/fisiología , Exocitosis/fisiología , Saccharomycetales/fisiología , Polaridad Celular/fisiología , Redes y Vías Metabólicas , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA