RESUMEN
In macromolecular structure determination using X-ray diffraction from multiple crystals, the presence of different structures (structural polymorphs) necessitates the classification of the diffraction data for appropriate structural analysis. Hierarchical clustering analysis (HCA) is a promising technique that has so far been used to extract isomorphous data, mainly for single-structure determination. Although in principle the use of HCA can be extended to detect polymorphs, the absence of a reference to define the threshold used to group the isomorphous data sets (the `isomorphic threshold') poses a challenge. Here, unit-cell-based and intensity-based HCAs have been applied to data sets for apo trypsin and inhibitor-bound trypsin that were mixed post data acquisition to investigate the efficacy of HCA in classifying polymorphous data sets. Single-step intensity-based HCA successfully classified polymorphs with a certain `isomorphic threshold'. In data sets for several samples containing an unknown degree of structural heterogeneity, polymorphs could be identified by intensity-based HCA using the suggested `isomorphic threshold'. Polymorphs were also detected in single crystals using data collected using the continuous helical scheme. These findings are expected to facilitate the determination of multiple structural snapshots by exploiting automated data collection and analysis.
Asunto(s)
Cristalografía por Rayos X , Tripsina , Difracción de Rayos X , Estructura Molecular , Análisis por ConglomeradosRESUMEN
D,L-Propargylglycine (PAG) has been widely used as a selective inhibitor to investigate the biological functions of cystathionine γ-lyase (CSE), which catalyzes the formation of reactive sulfur species (RSS). However, PAG also inhibits other PLP (pyridoxal-5'-phosphate)-dependent enzymes such as methionine γ-lyase (MGL) and L-alanine transaminase (ALT), so highly selective CSE inhibitors are still required. Here, we performed high-throughput screening (HTS) of a large chemical library and identified oxamic hydrazide 1 as a potent inhibitor of CSE (IC50 = 13 ± 1 µM (mean ± S.E.)) with high selectivity over other PLP-dependent enzymes and RSS-generating enzymes. Inhibitor 1 inhibited the enzymatic activity of human CSE in living cells, indicating that it is sufficiently membrane-permeable. X-Ray crystal structure analysis of the complex of rat CSE (rCSE) with 1 revealed that 1 forms a Schiff base linkage with the cofactor PLP in the active site of rCSE. PLP in the active site may be a promising target for development of selective inhibitors of PLP-dependent enzymes, including RSS-generating enzymes such as cystathionine ß-synthase (CBS) and cysteinyl-tRNA synthetase 2 (CARS2), which have unique substrate binding pocket structures.
Asunto(s)
Cistationina gamma-Liasa , Bases de Schiff , Animales , Humanos , Ratas , Dominio Catalítico , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/metabolismo , Fosfatos , Fosfato de Piridoxal/metabolismoRESUMEN
Gram-negative bacteria producing metallo-ß-lactamases (MBLs) have become a considerable threat to public health. MBLs including the IMP, VIM, and NDM types are Zn(II) enzymes that hydrolyze the ß-lactam ring present in a broad range of antibiotics, such as N-benzylpenicillin, meropenem, and imipenem. Among IMPs, IMP-1 and IMP-6 differ in a single amino acid substitution at position 262, where serine in IMP-1 is replaced by glycine in IMP-6, conferring a change in substrate specificity. To investigate how this mutation influences enzyme function, we examined lactamase inhibition by thiol compounds. Ethyl 3-mercaptopropionate acted as a competitive inhibitor of IMP-1, but a noncompetitive inhibitor of IMP-6. A comparison of the crystal structures previously reported for IMP-1 (PDB code: 5EV6) and IMP-6 (PDB code: 6LVJ) revealed a hydrogen bond between the side chain of Ser262 and Cys221 in IMP-1 but the absence of hydrogen bond in IMP-6, which affects the Zn2 coordination sphere in its active site. We investigated the demetallation rates of IMP-1 and IMP-6 in the presence of chelating agent ethylenediaminetetraacetic acid (EDTA) and found that the demetallation reactions had fast and slow phases with a first-order rate constant (kfast = 1.76 h-1, kslow = 0.108 h-1 for IMP-1, and kfast = 14.0 h-1 and kslow = 1.66 h-1 for IMP-6). The difference in the flexibility of the Zn2 coordination sphere between IMP-1 and IMP-6 may influence the demetallation rate, the catalytic efficiency against ß-lactam antibiotics, and the inhibitory effect of thiol compounds.
Asunto(s)
Antibacterianos , beta-Lactamasas , beta-Lactamasas/metabolismo , Dominio Catalítico , Sustitución de Aminoácidos , Antibacterianos/farmacología , beta-Lactamas/química , Zinc/química , Compuestos de SulfhidriloRESUMEN
RNA-binding pentatricopeptide repeat (PPR) proteins catalyze hundreds of cytidine to uridine RNA editing events in plant organelles; these editing events are essential for proper gene expression. More than half of the PPR-type RNA editing factors, however, lack the DYW cytidine deaminase domain. Genetic analyses have suggested that their cytidine deaminase activity arises by association with a family of DYW1-like proteins that contain an N-terminally truncated DYW domain, but their molecular mechanism has been unclear. Here, we report the crystal structure of the Arabidopsis thaliana DYW1 deaminase domain at 1.8 Å resolution. DYW1 has a cytidine deaminase fold lacking the PG box. The internal insertion within the deaminase fold shows an α-helical fold instead of the ß-finger reported for the gating domain of the A. thaliana ORGANELLE TRANSCRIPT PROCESSING 86. The substrate-binding pocket is incompletely formed and appears to be complemented in the complex by the E2 domain and the PG box of the interacting PPR protein. In vivo RNA editing assays corroborate the activation model for DYW1 deaminase. Our study demonstrates the common activation mechanism of the DYW1-like proteins by molecular complementation of the DYW domain and reconstitution of the substrate-binding pocket.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Estructura Terciaria de Proteína , Dominio Catalítico , Edición de ARN/genética , Orgánulos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ARN/metabolismo , Citidina Desaminasa/química , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas Portadoras/metabolismoRESUMEN
The post-translational modification of proteins regulates many biological processes. Their dysfunction relates to diseases. Ubiquitination is one of the post-translational modifications that target lysine residue and regulate many cellular processes. Three enzymes are required for achieving the ubiquitination reaction: ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). E3s play a pivotal role in selecting substrates. Many structural studies have been conducted to reveal the molecular mechanism of the ubiquitination reaction. Recently, the structure of PCAF_N, a newly categorized E3 ligase, was reported. We present a review of the recent progress toward the structural understanding of E3 ligases.
Asunto(s)
Modelos Moleculares , Conformación Proteica , Ubiquitina-Proteína Ligasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Familia de Multigenes , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Relación Estructura-Actividad , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , UbiquitinaciónRESUMEN
Nuclear import receptors (NIRs) not only transport RNA-binding proteins (RBPs) but also modify phase transitions of RBPs by recognizing nuclear localization signals (NLSs). Toxic arginine-rich poly-dipeptides from C9orf72 interact with NIRs and cause nucleocytoplasmic transport deficit. However, the molecular basis for the toxicity of arginine-rich poly-dipeptides toward NIRs function as phase modifiers of RBPs remains unidentified. Here we show that arginine-rich poly-dipeptides impede the ability of NIRs to modify phase transitions of RBPs. Isothermal titration calorimetry and size-exclusion chromatography revealed that proline:arginine (PR) poly-dipeptides tightly bind karyopherin-ß2 (Kapß2) at 1:1 ratio. The nuclear magnetic resonances of Kapß2 perturbed by PR poly-dipeptides partially overlapped with those perturbed by the designed NLS peptide, suggesting that PR poly-dipeptides target the NLS binding site of Kapß2. The findings offer mechanistic insights into how phase transitions of RBPs are disabled in C9orf72-related neurodegeneration.
Asunto(s)
Transporte Activo de Núcleo Celular/genética , Proteína C9orf72/química , Péptidos/química , beta Carioferinas/química , Sitios de Unión , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Clonación Molecular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Péptidos/genética , Péptidos/metabolismo , Transición de Fase , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta Carioferinas/antagonistas & inhibidores , beta Carioferinas/genética , beta Carioferinas/metabolismoRESUMEN
Previously, the structure elements of dihydrofolate reductase (DHFR) were determined using comprehen-sive Ala-insertion mutation analysis, which is assumed to be a kind of protein "building blocks." It is hypo-thesized that our comprehension of the structure elements could lead to understanding how an amino acid sequence dictates its tertiary structure. However, the comprehensive Ala-insertion mutation analysis is a time- and cost-consuming process and only a set of the DHFR structure elements have been reported so far. Therefore, developing a computational method to predict structure elements is an urgent necessity. We focused on intramolecular residue-residue contacts to predict the structure elements. We introduced a simple and effective parameter: the overlapped contact volume (CV) among the residues and calculated the CV along the DHFR sequence using the crystal structure. Our results indicate that the CV profile can recapitulate its precipitate ratio profile, which was used to define the structure elements in the Ala-insertion mutation analysis. The CV profile allowed us to predict structure elements like the experimentally determined structure elements. The strong correlation between the CV and precipitate ratio profiles indicates the importance of the intramolecular residue-residue contact in maintaining the tertiary structure. Additionally, the CVs between the structure elements are considerably more than those between a structure element and a linker or two linkers, indicating that the structure elements play a funda-mental role in increasing the intramolecular adhesion. Thus, we propose that the structure elements can be considered a type of "building blocks" that maintain and dictate the tertiary structures of proteins.
RESUMEN
General control nonderepressible 5 (GCN5, also known as Kat2a) and p300/CBP-associated factor (PCAF, also known as Kat2b) are two homologous acetyltransferases. Both proteins share similar domain architecture consisting of a PCAF N-terminal (PCAF_N) domain, acetyltransferase domain, and a bromodomain. PCAF also acts as a ubiquitin E3 ligase whose activity is attributable to the PCAF_N domain, but its structural aspects are largely unknown. Here, we demonstrated that GCN5 exhibited ubiquitination activity in a similar manner to PCAF and its activity was supported by the ubiquitin-conjugating enzyme UbcH5. Moreover, we determined the crystal structure of the PCAF_N domain at 1.8 Å resolution and found that PCAF_N domain folds into a helical structure with a characteristic binuclear zinc region, which was not predicted from sequence analyses. The zinc region is distinct from known E3 ligase structures, suggesting this region may form a new class of E3 ligase. Our biochemical and structural study provides new insight into not only the functional significance of GCN5 but also into ubiquitin biology.
Asunto(s)
Ubiquitina-Proteína Ligasas/química , Factores de Transcripción p300-CBP/química , Animales , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Factores de Transcripción p300-CBP/metabolismoRESUMEN
The nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ has been implicated in the pathogenesis of various human diseases including fatty liver. Although nuclear translocation of PPARγ plays an important role in PPARγ signaling, details of the translocation mechanisms have not been elucidated. Here we demonstrate that PPARγ2 translocates to the nucleus and activates signal transduction through H2O2-dependent formation of a PPARγ2 and transportin (Tnpo)1 complex via redox-sensitive disulfide bonds between cysteine (Cys)176 and Cys180 of the former and Cys512 of the latter. Using hepatocyte cultures and mouse models, we show that cytosolic H2O2/Tnpo1-dependent nuclear translocation enhances the amount of DNA-bound PPARγ and downstream signaling, leading to triglyceride accumulation in hepatocytes and liver. These findings expand our understanding of the mechanism underlying the nuclear translocation of PPARγ, and suggest that the PPARγ and Tnpo1 complex and surrounding redox environment are potential therapeutic targets in the treatment of PPARγ-related diseases.
Asunto(s)
Peróxido de Hidrógeno , PPAR gamma , Núcleo Celular , Hígado , PPAR gamma/genética , Transducción de SeñalRESUMEN
TRAF-interacting protein with a forkhead-associated (FHA) domain (TIFA), originally identified as an adaptor protein of TRAF6, has recently been shown to be involved in innate immunity, induced by a pathogen-associated molecular pattern (PAMP). ADP-ß-D-manno-heptose, a newly identified PAMP, binds to alpha-kinase 1 (ALPK1) and activates its kinase activity to phosphorylate TIFA. Phosphorylation triggers TIFA oligomerisation and formation of a subsequent TIFA-TRAF6 oligomeric complex for ubiquitination of TRAF6, eventually leading to NF-κB activation. However, the structural basis of TIFA-dependent TRAF6 signalling, especially oligomer formation of the TIFA-TRAF6 complex remains unknown. In the present study, we determined the crystal structures of mouse TIFA and two TIFA mutants-Thr9 mutated to either Asp or Glu to mimic the phosphorylation state-to obtain the structural information for oligomer formation of the TIFA-TRAF6 complex. Crystal structures show the dimer formation of mouse TIFA to be similar to that of human TIFA, which was previously reported. This dimeric structure is consistent with the solution structure obtained from small angle X-ray scattering analysis. In addition to the structural analysis, we examined the molecular assembly of TIFA and the TIFA-TRAF6 complex by size-exclusion chromatography, and suggested a model for the TIFA-TRAF6 signalling complex.
Asunto(s)
Inmunidad Innata/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/ultraestructura , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Ratones , FN-kappa B/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Factor 6 Asociado a Receptor de TNF/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , UbiquitinaciónRESUMEN
Small GTPases are key regulators of cellular events, and their dysfunction causes many types of cancer. They serve as molecular switches by cycling between inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states. GTPases are deactivated by GTPase-activating proteins (GAPs) and are activated by guanine-nucleotide exchange factors (GEFs). The intrinsic GTP hydrolysis activity of small GTPases is generally low and is accelerated by GAPs. GEFs promote GDP dissociation from small GTPases to allow for GTP binding, which results in a conformational change of two highly flexible segments, called switch I and switch II, that enables binding of the gamma phosphate and allows small GTPases to interact with downstream effectors. For several decades, crystal structures of many GEFs and GAPs have been reported and have shown tremendous structural diversity. In this review, we focus on the latest structural studies of GEFs. Detailed pictures of the variety of GEF mechanisms at atomic resolution can provide insights into new approaches for drug discovery.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Animales , Activación Enzimática , Retroalimentación Fisiológica , Humanos , Filogenia , Pliegue de ProteínaRESUMEN
SmgGDS has dual functions in cells and regulates small GTPases as both a guanine nucleotide exchange factor (GEF) for the Rho family and a molecular chaperone for small GTPases possessing a C-terminal polybasic region followed by four C-terminal residues called the CaaX motif, which is posttranslationally prenylated at its cysteine residue. Our recent structural work revealed that SmgGDS folds into tandem copies of armadillo-repeat motifs (ARMs) that are not present in other GEFs. However, the precise mechanism of GEF activity and recognition mechanism for the prenylated CaaX motif remain unknown because SmgGDS does not have a typical GEF catalytic domain and lacks a pocket to accommodate a prenyl group. Here, we aimed to determine the crystal structure of the SmgGDS/farnesylated RhoA complex. We found that SmgGDS induces a significant conformational change in the switch I and II regions that opens up the nucleotide-binding site, with the prenyl group fitting into the cryptic pocket in the N-terminal ARMs. Taken together, our findings could advance the understanding of the role of SmgGDS and enable drug design strategies for targeting SmgGDS and small GTPases.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Chaperonas Moleculares/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Pliegue de Proteína , Proteína de Unión al GTP rhoA/química , Secuencias de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Pruebas de Enzimas , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Simulación del Acoplamiento Molecular , Prenilación/fisiología , Unión Proteica , Proteína de Unión al GTP rhoA/metabolismoRESUMEN
Small GTPases are molecular switches that have critical biological roles and are controlled by GTPase-activating proteins and guanine nucleotide exchange factors (GEFs). The smg GDP dissociation stimulator (SmgGDS) protein functions as a GEF for the RhoA and RhoC small GTPases. SmgGDS has various regulatory roles, including small GTPase trafficking and localization and as a molecular chaperone, and interacts with many small GTPases possessing polybasic regions. Two SmgGDS splice variants, SmgGDS-558 and SmgGDS-607, differ in GEF activity and binding affinity for RhoA depending on the lipidation state, but the reasons for these differences are unclear. Here we determined the crystal structure of SmgGDS-558, revealing a fold containing tandem copies of armadillo repeats not present in other GEFs. We also observed that SmgGDS harbors distinct positively and negatively charged regions, both of which play critical roles in binding to RhoA and GEF activity. This is the first report demonstrating a relationship between the molecular function and atomic structure of SmgGDS. Our findings indicate that the two SmgGDS isoforms differ in GTPase binding and GEF activity, depending on the lipidation state, thus providing useful information about the cellular functions of SmgGDS in cells.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Modelos Moleculares , Prenilación de Proteína , Proteína de Unión al GTP rhoA/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Mutación Puntual , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Secuencias Repetitivas de Aminoácido , Solubilidad , Resonancia por Plasmón de Superficie , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/genéticaRESUMEN
Very recent studies indicate that sulfur atoms with oxidation state 0 or -1, called sulfane sulfurs, are the actual mediators of some physiological processes previously considered to be regulated by hydrogen sulfide (H2S). 3-Mercaptopyruvate sulfurtransferase (3MST), one of three H2S-producing enzymes, was also recently shown to produce sulfane sulfur (H2Sn). Here, we report the discovery of several potent 3MST inhibitors by means of high-throughput screening (HTS) of a large chemical library (174,118 compounds) with our H2S-selective fluorescent probe, HSip-1. Most of the identified inhibitors had similar aromatic ring-carbonyl-S-pyrimidone structures. Among them, compound 3 showed very high selectivity for 3MST over other H2S/sulfane sulfur-producing enzymes and rhodanese. The X-ray crystal structures of 3MST complexes with two of the inhibitors revealed that their target is a persulfurated cysteine residue located in the active site of 3MST. Precise theoretical calculations indicated the presence of a strong long-range electrostatic interaction between the persulfur anion of the persulfurated cysteine residue and the positively charged carbonyl carbon of the pyrimidone moiety of the inhibitor. Our results also provide the experimental support for the idea that the 3MST-catalyzed reaction with 3-mercaptopyruvate proceeds via a ping-pong mechanism.
Asunto(s)
Cisteína/análogos & derivados , Disulfuros/metabolismo , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/metabolismo , Sulfurtransferasas/antagonistas & inhibidores , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/metabolismo , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Unión Proteica , Conformación Proteica , Sulfurtransferasas/químicaRESUMEN
Protein arginine methyltransferase 8 (PRMT8) is unique among PRMTs, as it is specifically expressed in brain and localized to the plasma membrane via N-terminal myristoylation. Here, we describe the crystal structure of human PRMT8 (hPRMT8) at 3.0-Å resolution. The crystal structure of hPRMT8 exhibited a novel helical assembly. Biochemical, biophysical and mutagenesis experiments demonstrated that hPRMT8 forms an octamer in solution. This octameric structure is necessary for proper localization to the plasma membrane and efficient methyltransferase activity. The helical assembly might be a relevant quaternary form for hPRMT1, which is the predominant PRMT in mammalian cells and most closely related to hPRMT8.
Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Multimerización de Proteína , Estructura Secundaria de ProteínaRESUMEN
IMP-2, a subclass B1 metallo-ß-lactamase (MBL), is a Zn(II)-containing hydrolase. This hydrolase, involved in antibiotic resistance, catalyzes the hydrolysis of the C-N bond of the ß-lactam ring in ß-lactam antibiotics such as benzylpenicillin and imipenem. The crystal structure of IMP-2 MBL from Acinetobacter spp. was determined at 2.3 Å resolution. This structure is analogous to that of subclass B1 MBLs such as IMP-1 and VIM-2. Comparison of the structures of IMP-1 and IMP-2, which have an 85% amino acid identity, suggests that the amino acid substitution at position 68 on a ß-strand (ß3) (Pro in IMP-1 versus Ser in IMP-2) may be a staple factor affecting the flexibility of loop 1 (comprising residues at positions 60-66; EVNGWGV). In the IMP-1 structure, loop 1 adopts an open, disordered conformation. On the other hand, loop 1 of IMP-2 forms a closed conformation in which the side chain of Trp64, involved in substrate binding, is oriented so as to cover the active site, even though there is an acetate ion in the active site of both IMP-1 and IMP-2. Loop 1 of IMP-2 has a more flexible structure in comparison to IMP-1 due to having a Ser residue instead of the Pro residue at position 68, indicating that this difference in sequence may be a trigger to induce a more flexible conformation in loop 1.
Asunto(s)
Acinetobacter/enzimología , Proteínas Bacterianas/química , beta-Lactamasas/química , Dominio Catalítico , Cristalización , Conformación Proteica , Difracción de Rayos XRESUMEN
Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to nitrogen atoms on arginine residues. Here, we describe the crystal structure of Caenorhabditis elegans PRMT7 in complex with its reaction product S-adenosyl-L-homocysteine. The structural data indicated that PRMT7 harbors two tandem repeated PRMT core domains that form a novel homodimer-like structure. S-adenosyl-L-homocysteine bound to the N-terminal catalytic site only; the C-terminal catalytic site is occupied by a loop that inhibits cofactor binding. Mutagenesis demonstrated that only the N-terminal catalytic site of PRMT7 is responsible for cofactor binding.