Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 206(7): 286, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829426

RESUMEN

Controlling the hazard of sclerotia produced by the Sclerotinia sclerotiorum is very complex, and it is urgent to adopt an effective method that is harmonious environmentally to control the disease. Among the six isolates isolated from the rhizosphere of lettuce, the isolate HZA84 demonstrated a high activity in its antagonism towards Sclerotinia sclerotiorum in vitro, and produces siderophore. By amplification of internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF1-α), and RNA polymerase II subunit (RPB2) genes, the isolate HZA84 was identified as Trichoderma asperellum, which was confirmed by analysis of phylogenetic tree. The Scanning electron microscope monitoring detected that the isolate HZA84 spread over the sclerotial surface, thus, damaging, decomposing, and distorting the globular cells of the outer cortex of the sclerotia. The Real-time polymerase chain reaction (RT-qPCR) analysis disclosed the overexpression of two genes (chit33 and chit37) encoding the endochitinase in addition to one gene (prb1) encoding the proteinase during 4 and 8 days of the parasitism behavior of isolate HZA84 on the sclerotia surface. These enzymes aligned together in the sclerotia destruction by hyperparasitism. On the other hand, the pots trial revealed that spraying of isolate HZA84 reduced the drop disease symptoms of lettuce. The disease severity was decreased by 19.33 and the biocontrol efficiency was increased by 80.67% within the fourth week of inoculation. These findings magnify the unique role of Trichoderma in disrupting the development of plant diseases in sustainable ways.


Asunto(s)
Ascomicetos , Lactuca , Filogenia , Enfermedades de las Plantas , Lactuca/microbiología , Ascomicetos/genética , Ascomicetos/fisiología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Rizosfera , Antibiosis , Hypocreales/genética , Hypocreales/metabolismo , Hypocreales/aislamiento & purificación , Microbiología del Suelo , Trichoderma/genética , Trichoderma/aislamiento & purificación , Trichoderma/fisiología , Trichoderma/metabolismo
2.
Plants (Basel) ; 12(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37960117

RESUMEN

Verticillium dahliae is a soilborne fungal pathogen that causes vascular wilt diseases in a wide range of economically important crops, including eggplant. Trichoderma spp. are effective biological control agents that suppress a wide range of plant pathogens through a variety of mechanisms, including mycoparasitism. However, the molecular mechanisms of mycoparasitism of Trichoderma spp. in the degradation of microsclerotia of V. dahliae are not yet fully understood. In this study, the ability of 15 isolates of Trichoderma to degrade microsclerotia of V. dahliae was evaluated using a dual culture method. After 15 days, isolate HZA14 showed the greatest potential for microsclerotial degradation. The culture filtrate of isolate HZA14 also significantly inhibited the mycelial growth and conidia germination of V. dahliae at different dilutions. Moreover, this study showed that T. virens produced siderophores and indole-3-acetic acid (IAA). In disease control tests, T. virens HZA14 reduced disease severity in eggplant seedlings by up to 2.77%, resulting in a control efficacy of 96.59% at 30 days after inoculation. Additionally, inoculation with an HZA14 isolate increased stem and root length and fresh and dry weight, demonstrating plant growth promotion efficacy. To further investigate the mycoparasitism mechanism of T. virens HZA14, transcriptomics sequencing and real-time fluorescence quantitative PCR (RT-qPCR) were used to identify the differentially expressed genes (DEGs) of T. virens HZA14 at 3, 6, 9, 12, and 15 days of the interaction with microsclerotia of V. dahliae. In contrast to the control group, the mycoparasitic process of T. virens HZA14 exhibited differential gene expression, with 1197, 1758, 1936, and 1914 genes being up-regulated and 1191, 1963, 2050, and 2114 genes being down-regulated, respectively. Among these genes, enzymes associated with the degradation of microsclerotia, such as endochitinase A1, endochitinase 3, endo-1,3-beta-glucanase, alpha-N-acetylglucosaminidase, laccase-1, and peroxidase were predicted based on bioinformatics analysis. The RT-qPCR results confirmed the RNA-sequencing data, showing that the expression trend of the genes was consistent. These results provide important information for understanding molecular mechanisms of microsclerotial degradation and integrated management of Verticillium wilt in eggplant and other crops.

3.
Front Cell Infect Microbiol ; 13: 1225285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886665

RESUMEN

Bacterial brown stripe disease caused by Acidovorax oryzae is a major threat to crop yields, and the current reliance on pesticides for control is unsustainable due to environmental pollution and resistance. To address this, bacterial-based ligands have been explored as a potential treatment solution. In this study, we developed a protein-protein interaction (PPI) network for A. oryzae by utilizing shared differentially expressed genes (DEGs) and the STRING database. Using a maximal clique centrality (MCC) approach through CytoHubba and Network Analyzer, we identified hub genes within the PPI network. We then analyzed the genomic data of the top 10 proteins, and further narrowed them down to 2 proteins by utilizing betweenness, closeness, degree, and eigenvector studies. Finally, we used molecular docking to screen 100 compounds against the final two proteins (guaA and metG), and Enfumafungin was selected as a potential treatment for bacterial resistance caused by A. oryzae based on their binding affinity and interaction energy. Our approach demonstrates the potential of utilizing bioinformatics and molecular docking to identify novel drug candidates for precision treatment of bacterial brown stripe disease caused by A. oryzae, paving the way for more targeted and sustainable control strategies. The efficacy of Enfumafungin in inhibiting the growth of A. oryzae strain RS-1 was investigated through both computational and wet lab methods. The models of the protein were built using the Swiss model, and their accuracy was confirmed via a Ramachandran plot. Additionally, Enfumafungin demonstrated potent inhibitory action against the bacterial strain, with an MIC of 100 µg/mL, reducing OD600 values by up to 91%. The effectiveness of Enfumafungin was further evidenced through agar well diffusion assays, which exhibited the highest zone of inhibition at 1.42 cm when the concentration of Enfumafungin was at 100 µg/mL. Moreover, Enfumafungin was also able to effectively reduce the biofilm of A. oryzae RS-1 in a concentration-dependent manner. The swarming motility of A. oryzae RS-1 was also found to be significantly inhibited by Enfumafungin. Further validation through TEM observation revealed that bacterial cells exposed to Enfumafungin displayed mostly red fluorescence, indicating destruction of the bacterial cell membrane.


Asunto(s)
Oryza , Oryza/microbiología , Simulación del Acoplamiento Molecular , Biología Computacional
4.
Nanomaterials (Basel) ; 13(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686983

RESUMEN

The environmental impact of industrial development has been well-documented. The use of physical and chemical methods in industrial development has negative consequences for the environment, raising concerns about the sustainability of this approach. There is a growing need for advanced technologies that are compatible with preserving the environment. The use of fungi products for nanoparticle (NP) synthesis is a promising approach that has the potential to meet this need. The genus Trichoderma is a non-pathogenic filamentous fungus with a high degree of genetic diversity. Different strains of this genus have a variety of important environmental, agricultural, and industrial applications. Species of Trichoderma can be used to synthesize metallic NPs using a biological method that is environmentally friendly, low cost, energy saving, and non-toxic. In this review, we provide an overview of the role of Trichoderma metabolism in the synthesis of metallic NPs. We discuss the different metabolic pathways involved in NP synthesis, as well as the role of metabolic metabolites in stabilizing NPs and promoting their synergistic effects. In addition, the future perspective of NPs synthesized by extracts of Trichoderma is discussed, as well as their potential applications in biomedicine, agriculture, and environmental health.

5.
Molecules ; 27(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35011455

RESUMEN

Ralstonia solanacearum is the most destructive pathogen, causing bacterial wilt disease of eggplant. The present study aimed to develop green synthesis and characterization of silver chloride nanoparticles (AgCl-NPs) by using a native bacterial strain and subsequent evaluation of their antibacterial activity against R. solanacearum. Here, a total of 10 bacterial strains were selected for the biosynthesis of AgCl-NPs. Among them, the highest yield occurred in the synthesis of AgCl-NPs using a cell-free aqueous filtrate of strain IMA13. Ultrastructural observation revealed that the AgCl-NPs were spherical and oval with smooth surfaces and 5-35 nm sizes. XRD analysis studies revealed that these particles contained face-centered cubic crystallites of metallic Ag and AgCl. Moreover, FTIR analysis showed the presence of capping proteins, carbohydrates, lipids, and lipopeptide compounds and crystalline structure of AgCl-NPs. On the basis of phylogenetic analysis using a combination of six gene sequences (16S, gyrA, rpoB, purH, polC, and groEL), we identified strain IMA13 as Bacillus mojavensis. Three kinds of lipopeptide compounds, namely, bacillomycin D, iturin, and fengycin, forming cell-free supernatant produced by strain IAM13, were identified by MALDI-TOF mass spectrometry. Biogenic AgCl-NPs showed substantial antibacterial activity against R. solanacearum at a concentration of 20 µg/mL-1. Motility assays showed that the AgCl-NPs significantly inhibited the swarming and swimming motility (61.4 and 55.8%) against R. solanacearum. Moreover, SEM and TEM analysis showed that direct interaction of AgCl-NPs with bacterial cells caused rupture of cell wall and cytoplasmic membranes, as well as leakage of nucleic acid materials, which ultimately resulted in the death of R. solanacearum. Overall, these findings will help in developing a promising nanopesticide against phytopathogen plant disease management.


Asunto(s)
Antibacterianos/biosíntesis , Antibacterianos/farmacología , Bacterias/metabolismo , Nanopartículas del Metal , Ralstonia solanacearum/efectos de los fármacos , Rizosfera , Compuestos de Plata/metabolismo , Antibiosis , Lipopéptidos/química , Lipopéptidos/farmacología , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/ultraestructura , Análisis Espectral
6.
Nanomaterials (Basel) ; 10(10)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008115

RESUMEN

To control the disease caused by Sclerotinia sclerotiorum, a total of 15 isolates of the Trichoderma species was screened for the biosynthesis of silver nanoparticles (AgNPs). Among them, the highest yield occurred in the synthesis of AgNPs using a cell-free aqueous filtrate of T.virens HZA14 producing gliotoxin. The synthetic AgNPs were charactered by SEM, EDS, TEM, XRD, and FTIR. Electron microscopy studies revealed that the size of AgNPs ranged from 5-50 nm and had spherical and oval shapes with smooth surfaces. Prepared AgNPs interacted with protein, carbohydrate and heterocyclic compound molecules, and especially, interaction patterns of AgNPs with the gliotoxin molecule were proposed. The antifungal activity assays demonstrated that percentage inhibition of the prepared AgNPs was 100, 93.8 and 100% against hyphal growth, sclerotial formation, and myceliogenic germination of sclerotia at a concentration of 200 µg/mL, respectively. The direct interaction between nanoparticles and fungal cells, including AgNPs' contact, accumulation, lamellar fragment production and micropore or fissure formation on fungal cell walls, was revealed by SEM and EDS. These will extend our understanding of the mechanisms of AgNPs' action for preventing diversified fungal disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...