Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Radiat Res ; 201(1): 35-47, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989124

RESUMEN

Intermediate to high-grade lung neuroendocrine tumors (NETs; i.e., atypical carcinoid tumors) and neuroendocrine carcinomas (NECs) are currently difficult to cure. These tumors were found to express the CXCR4 G-protein coupled receptor that can be targeted with radioligands. PCR and flow cytometric analysis of lung NET and NEC cell lines using an anti-CXCR4 antibody demonstrated that all cell lines tested expressed CXCR4. PET/CT imaging with 68Galium-pentixafor in mouse xenografts of NETs and NECs verified tumor targeting that was blocked by a CXCR4 agonist. Clonogenic survival analysis demonstrated a more than additive enhancement of killing when 1 µM auranofin (a thioredoxin reductase inhibitor) was used as a radiosensitizer in combination with 177Lu-pentixather (10 µCi). DMS273 small cell lung cancer xenografts in female nude mice treated with 25 µCi/g 177Lu-pentixather induced inhibition of tumor growth and resulted in an increase in overall survival without causing unacceptable normal tissue toxicities. Immunohistochemical staining of 95 retrospective human samples (containing 90 small cell lung carcinomas) demonstrated 84% CXCR4 positivity. In a multivariable analysis of this cohort that included age, gender, stage, primary site, SSTR2 status, and CXCR4 status, Cox regression models determined that only distant metastasis at presentation (P < 0.01) and a CXCR4 H-score >30 (P = 0.04) were significantly associated with reduced survival. Prospective clinical testing of patient tumors identified CXCR4-positivity in 76% of 21 NECs, 67% of 15 lung NETs (including 8 of 10 atypical carcinoids), and 0% of 25 non-lung NETs (including 5 NETS G3s). These data support the hypothesis that CXCR4-targeted theranostics can be utilized effectively for select NETs and NECs.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Pulmonares , Humanos , Femenino , Animales , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Ratones Desnudos , Estudios Prospectivos , Estudios Retrospectivos , Neoplasias Pulmonares/patología , Carcinoma Neuroendocrino/tratamiento farmacológico , Receptores de Quimiocina , Receptores CXCR4/metabolismo
2.
Front Oncol ; 13: 1185715, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397370

RESUMEN

A distinctive feature of cancer is the upregulation of sirtuin proteins. Sirtuins are class III NAD+-dependent deacetylases involved in cellular processes such as proliferation and protection against oxidative stress. SIRTs 1 and 2 are also overexpressed in several types of cancers including non-small cell lung cancer (NSCLC). Sirtinol, a sirtuin (SIRT) 1 and 2 specific inhibitor, is a recent anti-cancer agent that is cytotoxic against several types of cancers including NSCLC. Thus, sirtuins 1 and 2 represent valuable targets for cancer therapy. Recent studies show that sirtinol functions as a tridentate iron chelator by binding Fe3+ with 3:1 stoichiometry. However, the biological consequences of this function remain unexplored. Consistent with preliminary literature, we show that sirtinol can deplete intracellular labile iron pools in both A549 and H1299 non-small cell lung cancer cells acutely. Interestingly, a temporal adaptive response occurs in A549 cells as sirtinol enhances transferrin receptor stability and represses ferritin heavy chain translation through impaired aconitase activity and apparent IRP1 activation. This effect was not observed in H1299 cells. Holo-transferrin supplementation significantly enhanced colony formation in A549 cells while increasing sirtinol toxicity. This effect was not observed in H1299 cells. The results highlight the fundamental genetic differences that may exist between H1299 and A549 cells and offer a novel mechanism of how sirtinol kills NSCLC cells.

3.
Iowa Orthop J ; 42(1): 255-262, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35821920

RESUMEN

Background: Cancer cells often have altered iron metabolism relative to non-malignant cells with increased transferrin receptor and ferritin expression. Targeting iron regulatory proteins as part of a cancer therapy regimen is currently being investigated in various malignancies. Anti-cancer therapies that exploit the differences in iron metabolism between malignant and non-malignant cells (e.g. pharmacological ascorbate and iron chelation therapy) have shown promise in various cancers, including glioblastoma, lung, and pancreas cancers. Non-invasive techniques that probe tissue iron metabolism may provide valuable information for the personalization of iron-based cancer therapies. T2* mapping is a clinically available MRI technique that assesses tissue iron content in the heart and liver. We aimed to investigate the capacity of T2* mapping to detect iron stores in soft tissue sarcomas (STS). Methods: In this study, we evaluated T2* relaxation times ex vivo in five STS samples from subjects enrolled on a phase Ib/IIa clinical trial combining pharmacological ascorbate with neoadjuvant radiation therapy. Iron protein expression levels (ferritin, transferrin receptor, iron response protein 2) were evaluated by Western blot analysis. Bioinformatic data relating clinical outcomes in STS patients and iron protein expression levels were evaluated using the KMplotter database. Results: There was a high level of inter-subject variability in the expression of iron protein and T2* relaxation times. We identified that T2* relaxation time is capable of accurately detecting ferritin-heavy chain expression (r = -0.96) in these samples. Bioinformatic data acquired from the KMplot database revealed that transferrin receptor and iron-responsive protein 2 may be negative prognostic markers while ferritin expression may be a positive prognostic marker in the management of STS. Conclusion: These data suggest that targeting iron regulatory proteins may provide a therapeutic approach to enhance STS management. Additionally, T2* mapping has the potential to be used a clinically accessible, non-invasive marker of STS iron regulatory protein expression and influence cancer therapy decisions that warrants further investigation. Level of Evidence: IV.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Ferritinas/metabolismo , Humanos , Hierro/metabolismo , Proteínas Reguladoras del Hierro/metabolismo , Imagen por Resonancia Magnética , Receptores de Transferrina , Sarcoma/diagnóstico por imagen , Sarcoma/tratamiento farmacológico
4.
PLoS One ; 11(11): e0167323, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27902770

RESUMEN

Therapeutic advances have markedly prolonged overall survival in multiple myeloma (MM) but the disease currently remains incurable. In a panel of MM cell lines (MM.1S, OPM-2, H929, and U266), using CD138 immunophenotyping, side population staining, and stem cell-related gene expression, we demonstrate the presence of stem-like tumor cells. Hypoxic culture conditions further increased CD138low stem-like cells with upregulated expression of OCT4 and NANOG. Compared to MM cells, these stem-like cells maintained lower steady-state pro-oxidant levels with increased uptake of the fluorescent deoxyglucose analog. In primary human MM samples, increased glycolytic gene expression correlated with poorer overall and event-free survival outcomes. Notably, stem-like cells showed increased mitochondrial mass, rhodamine 123 accumulation, and orthodox mitochondrial configuration while more condensed mitochondria were noted in the CD138high cells. Glycolytic inhibitor 2-deoxyglucose (2-DG) induced ER stress as detected by qPCR (BiP, ATF4) and immunoblotting (BiP, CHOP) and increased dihydroethidium probe oxidation both CD138low and CD138high cells. Treatment with a mitochondrial-targeting agent decyl-triphenylphosphonium (10-TPP) increased intracellular steady-state pro-oxidant levels in stem-like and mature MM cells. Furthermore, 10-TPP mediated increases in mitochondrial oxidant production were suppressed by ectopic expression of manganese superoxide dismutase. Relative to 2-DG or 10-TPP alone, 2-DG plus 10-TPP combination showed increased caspase 3 activation in MM cells with minimal toxicity to the normal hematopoietic progenitor cells. Notably, treatment with polyethylene glycol conjugated catalase significantly reduced 2-DG and/or 10-TPP-induced apoptosis of MM cells. Also, the combination of 2-DG with 10-TPP decreased clonogenic survival of MM cells. Taken together, this study provides a novel strategy of metabolic oxidative stress-induced cytotoxicity of MM cells via 2-DG and 10-TPP combination therapy.


Asunto(s)
Muerte Celular/efectos de los fármacos , Desoxiglucosa/farmacología , Mieloma Múltiple/patología , Células Madre Neoplásicas/patología , Compuestos Onio/farmacología , Compuestos Organofosforados/farmacología , Estrés Oxidativo/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Interacciones Farmacológicas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Glucólisis/genética , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Pronóstico , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...