Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 22(1): 51, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509238

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) and adenosine-to-inosine (A-to-I) RNA editing are two of the most abundant RNA modification events affecting adenosines in mammals. Both these RNA modifications determine mRNA fate and play a pivotal role in tumor development and progression. RESULTS: Here, we show that METTL3, upregulated in glioblastoma, methylates ADAR1 mRNA and increases its protein level leading to a pro-tumorigenic mechanism connecting METTL3, YTHDF1, and ADAR1. We show that ADAR1 plays a cancer-promoting role independently of its deaminase activity by binding CDK2 mRNA, underlining the importance of ADARs as essential RNA-binding proteins for cell homeostasis as well as cancer progression. Additionally, we show that ADAR1 knockdown is sufficient to strongly inhibit glioblastoma growth in vivo. CONCLUSIONS: Hence, our findings underscore METTL3/ADAR1 axis as a novel crucial pathway in cancer progression that connects m6A and A-to-I editing post-transcriptional events.


Asunto(s)
Adenosina Desaminasa/genética , Carcinogénesis/genética , Glioblastoma/genética , Metiltransferasas/genética , Proteínas de Unión al ARN/genética , Adenosina/metabolismo , Adulto , Animales , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Glioblastoma/patología , Humanos , Masculino , Mutagénesis , Isoformas de Proteínas , ARN Mensajero/metabolismo
2.
FASEB J ; 33(8): 9044-9061, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31095429

RESUMEN

Murine thymoma viral oncogene homolog (AKT) kinases target both cytosolic and nuclear substrates for phosphorylation. Whereas the cytosolic substrates are known to be closely associated with the regulation of apoptosis and autophagy or metabolism and protein synthesis, the nuclear substrates are, for the most part, poorly understood. To better define the role of nuclear AKT, potential AKT substrates were isolated from the nuclear lysates of leukemic cell lines using a phosphorylated AKT substrate antibody and identified in tandem mass spectrometry. Among the proteins identified was adenosine deaminase acting on RNA (ADAR)1p110, the predominant nuclear isoform of the adenosine deaminase acting on double-stranded RNA. Coimmunoprecipitation studies and in vitro kinase assays revealed that AKT-1, -2, and -3 interact with both ADAR1p110 and ADAR2 and phosphorylate these RNA editases. Using site-directed mutagenesis of suspected AKT phosphorylation sites, AKT was found to primarily phosphorylate ADAR1p110 and ADAR2 on T738 and T553, respectively, and overexpression of the phosphomimic mutants ADAR1p110 (T738D) and ADAR2 (T553D) resulted in a 50-100% reduction in editase activity. Thus, activation of AKT has a direct and major impact on RNA editing.-Bavelloni, A., Focaccia, E., Piazzi, M., Raffini, M., Cesarini, V., Tomaselli, S., Orsini, A., Ratti, S., Faenza, I., Cocco, L., Gallo, A., Blalock, W. L. AKT-dependent phosphorylation of the adenosine deaminases ADAR-1 and -2 inhibits deaminase activity.


Asunto(s)
Adenosina Desaminasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina Desaminasa/química , Adenosina Desaminasa/genética , Sustitución de Aminoácidos , Sitios de Unión/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Edición de ARN , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
3.
Nucleic Acids Res ; 46(4): 2045-2059, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29267965

RESUMEN

Recent studies have reported the emerging role of microRNAs (miRNAs) in human cancers. We systematically characterized miRNA expression and editing in the human brain, which displays the highest number of A-to-I RNA editing sites among human tissues, and in de novo glioblastoma brain cancer. We identified 299 miRNAs altered in their expression and 24 miRNAs differently edited in human brain compared to glioblastoma tissues. We focused on the editing site within the miR-589-3p seed. MiR-589-3p is a unique miRNA almost fully edited (∼100%) in normal brain and with a consistent editing decrease in glioblastoma. The edited version of miR-589-3p inhibits glioblastoma cell proliferation, migration and invasion, while the unedited version boosts cell proliferation and motility/invasion, thus being a potential cancer-promoting factor. We demonstrated that the editing of this miRNA is mediated by ADAR2, and retargets miR-589-3p from the tumor-suppressor PCDH9 to ADAM12, which codes for the metalloproteinase 12 promoting glioblastoma invasion. Overall, our study dissects the role of a unique brain-specific editing site within miR-589-3p, with important anticancer features, and highlights the importance of RNA editing as an essential player not only for diversifying the genomic message but also for correcting not-tolerable/critical genomic coding sites.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , MicroARNs/metabolismo , Edición de ARN , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Adulto , Encéfalo/metabolismo , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/enzimología , Glioblastoma/metabolismo , Glioblastoma/patología , Células HEK293 , Humanos , Inosina/metabolismo , Masculino , MicroARNs/química , Invasividad Neoplásica , Proteínas de Unión al ARN/metabolismo
4.
Genome Biol ; 16: 5, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25582055

RESUMEN

BACKGROUND: ADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known. RESULTS: By integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration. CONCLUSIONS: Our findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.


Asunto(s)
Adenosina Desaminasa/metabolismo , Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/enzimología , Glioblastoma/genética , MicroARNs/genética , Edición de ARN/genética , Proteínas de Unión al ARN/metabolismo , Adolescente , Animales , Encéfalo/enzimología , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Silenciador del Gen , Glioblastoma/patología , Células HEK293 , Humanos , Ratones , MicroARNs/metabolismo , Modelos Biológicos
5.
Curr Issues Mol Biol ; 17: 37-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25502818

RESUMEN

All viruses that have dsRNA structures at any stages of their life cycle may potentially undergo RNA editing events mediated by the ADAR enzymes. Indeed, an increasing number of studies that describe A-to-I sequence changes in viral genomes and/or transcripts, consistent with ADAR deaminase activity, are reported. These modifications can appear either as hyperediting during persistent viral infections or as specific RNA editing events in viral dsRNAs. It is now well established that ADAR enzymes can affect viruses and viral interaction with the host cell in both an editing-dependent and -independent manner, with ADARs acting as pro- or anti-viral factors. Despite the discovery of editing events on viral RNAs dates back to thirty years ago, the biological consequences of A-to-I changes during viral infection is still far to be completely elucidated. In this review, past and recent studies on the importance of ADAR enzymes on several viruses will be examined.


Asunto(s)
Adenosina Desaminasa/metabolismo , Inmunidad Innata , Edición de ARN , Virus ARN/genética , Virus ARN/inmunología , Virosis/etiología , Virosis/metabolismo , Adenosina Desaminasa/genética , Animales , Genoma Viral , Humanos , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo
6.
Cell Tissue Res ; 356(3): 527-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24770896

RESUMEN

A-to-I RNA editing is a ubiquitous and crucial molecular mechanism able to convert adenosines into inosines (then read as guanosines by several intracellular proteins/enzymes) within RNA molecules, changing the genomic information. The A-to-I deaminase enzymes (ADARs), which modify the adenosine, can alter the splicing and translation machineries, the double-stranded RNA structures and the binding affinity between RNA and RNA-binding proteins. ADAR activity is an essential mechanism in mammals and altered editing has been associated with several human diseases. Many efforts are now being concentrated on modifying ADAR activity in vivo in an attempt to correct RNA editing dysfunction. Concomitantly, ongoing studies aim to show the way that the ADAR deaminase domain can be used as a possible new tool, an intracellular Trojan horse, for the correction of heritage diseases not related to RNA editing events.


Asunto(s)
Adenosina Desaminasa/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Edición de ARN , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Adenosina Desaminasa/genética , Enfermedades Genéticas Congénitas/genética , Humanos , ARN/genética , Proteínas de Unión al ARN/genética
7.
PLoS One ; 9(3): e91351, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24637888

RESUMEN

Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development.


Asunto(s)
Empalme Alternativo , Encéfalo/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas Activadoras de GTPasa/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas Nucleares/genética , Organogénesis/genética , Edición de ARN , Adenosina Desaminasa/metabolismo , Secuencia de Bases , Encéfalo/embriología , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Orden Génico , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/embriología , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Isoformas de ARN , Precursores del ARN/química , Precursores del ARN/genética , Proteínas de Unión al ARN/metabolismo
8.
Int J Mol Sci ; 14(11): 22796-816, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24256817

RESUMEN

Adenosine deaminase acting on RNA (ADAR) enzymes convert adenosine (A) to inosine (I) in double-stranded (ds) RNAs. Since Inosine is read as Guanosine, the biological consequence of ADAR enzyme activity is an A/G conversion within RNA molecules. A-to-I editing events can occur on both coding and non-coding RNAs, including microRNAs (miRNAs), which are small regulatory RNAs of ~20-23 nucleotides that regulate several cell processes by annealing to target mRNAs and inhibiting their translation. Both miRNA precursors and mature miRNAs undergo A-to-I RNA editing, affecting the miRNA maturation process and activity. ADARs can also edit 3' UTR of mRNAs, further increasing the interplay between mRNA targets and miRNAs. In this review, we provide a general overview of the ADAR enzymes and their mechanisms of action as well as miRNA processing and function. We then review the more recent findings about the impact of ADAR-mediated activity on the miRNA pathway in terms of biogenesis, target recognition, and gene expression regulation.


Asunto(s)
Adenosina Desaminasa/genética , Regulación de la Expresión Génica/genética , MicroARNs/genética , ARN Bicatenario/genética , Adenosina/genética , Humanos , Inosina/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN
9.
BMC Cancer ; 13: 255, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23697632

RESUMEN

BACKGROUND: High-grade (WHO grade III and IV) astrocytomas are aggressive malignant brain tumors affecting humans with a high risk of recurrence in both children and adults. To date, limited information is available on the genetic and molecular alterations important in the onset and progression of pediatric high-grade astrocytomas and, even less, on the prognostic factors that influence long-term outcome in children with recurrence. A-to-I RNA editing is an essential post-transcriptional mechanism that can alter the nucleotide sequence of several RNAs and is mediated by the ADAR enzymes. ADAR2 editing activity is particularly important in mammalian brain and is impaired in both adult and pediatric high-grade astrocytomas. Moreover, we have recently shown that the recovered ADAR2 activity in high-grade astrocytomas inhibits in vivo tumor growth. The aim of the present study is to investigate whether changes may occur in ADAR2-mediated RNA editing profiles of relapsed high-grade astrocytomas compared to their respective specimens collected at diagnosis, in four pediatric patients. METHODS: Total RNAs extracted from all tumor samples and controls were tested for RNA editing levels (by direct sequencing on cDNA pools) and for ADAR2 mRNA expression (by qRT-PCR). RESULTS: A significant loss of ADAR2-editing activity was observed in the newly diagnosed and recurrent astrocytomas in comparison to normal brain. Surprisingly, we found a substantial rescue of ADAR2 editing activity in the relapsed tumor of the only patient showing prolonged survival. CONCLUSIONS: High-grade astrocytomas display a generalized loss of ADAR2-mediated RNA editing at both diagnosis and relapse. However, a peculiar Case, in complete remission of disease, displayed a total rescue of RNA editing at relapse, intriguingly suggesting ADAR2 activity/expression as a possible marker for long-term survival of patients with high-grade astrocytomas.


Asunto(s)
Adenosina Desaminasa/genética , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Recurrencia Local de Neoplasia/genética , Edición de ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Adenosina Desaminasa/metabolismo , Adolescente , Astrocitoma/metabolismo , Encéfalo , Neoplasias Encefálicas/metabolismo , Niño , Preescolar , Femenino , Humanos , Masculino , Clasificación del Tumor , Recurrencia Local de Neoplasia/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
10.
Biomark Med ; 6(6): 729-42, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23227838

RESUMEN

During the last two decades, numerous efforts have been made to identify reliable and predictive noninvasive biomarkers to detect the early signs of metabolic disorders due to deregulation of lipid and glucose homeostasis. Several studies demonstrate that miRNAs--small noncoding RNAs involved in the regulation of gene expression--may play crucial roles in the control of metabolism. Alterations of miRNA levels often occur in metabolic disorders, both in specific tissues and plasma. Therefore, it is conceivable that the analysis of circulating miRNA profiles may improve not only the knowledge of miRNA-mediated mechanisms and effects in metabolism, but may also offer an alternative diagnostic tool. In the first part of this review we provide an overview of miRNA biogenesis and regulation, and experimental approaches for studying their expression levels. Afterwards, we discuss recent data regarding altered intracellular and circulating miRNAs associated with specific metabolic disorders.


Asunto(s)
Enfermedades Metabólicas/sangre , MicroARNs/sangre , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Técnicas Genéticas , Humanos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , MicroARNs/biosíntesis , MicroARNs/genética , MicroARNs/metabolismo
11.
PLoS One ; 7(9): e44184, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22957051

RESUMEN

RNA editing is a post-transcriptional process occurring in a wide range of organisms. In human brain, the A-to-I RNA editing, in which individual adenosine (A) bases in pre-mRNA are modified to yield inosine (I), is the most frequent event. Modulating gene expression, RNA editing is essential for cellular homeostasis. Indeed, its deregulation has been linked to several neurological and neurodegenerative diseases. To date, many RNA editing sites have been identified by next generation sequencing technologies employing massive transcriptome sequencing together with whole genome or exome sequencing. While genome and transcriptome reads are not always available for single individuals, RNA-Seq data are widespread through public databases and represent a relevant source of yet unexplored RNA editing sites. In this context, we propose a simple computational strategy to identify genomic positions enriched in novel hypothetical RNA editing events by means of a new two-steps mapping procedure requiring only RNA-Seq data and no a priori knowledge of RNA editing characteristics and genomic reads. We assessed the suitability of our procedure by confirming A-to-I candidates using conventional Sanger sequencing and performing RNA-Seq as well as whole exome sequencing of human spinal cord tissue from a single individual.


Asunto(s)
Edición de ARN , Médula Espinal/patología , Adenosina/genética , Algoritmos , Encéfalo/metabolismo , Biología Computacional/métodos , Bases de Datos Genéticas , Exoma , Regulación de la Expresión Génica , Genoma Humano , Genómica , Homeostasis , Humanos , Inosina/genética , Enfermedades Neurodegenerativas/metabolismo , Reproducibilidad de los Resultados , Programas Informáticos , Médula Espinal/metabolismo , Transcriptoma
12.
Semin Cell Dev Biol ; 23(3): 244-50, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21930228

RESUMEN

Carcinogenesis is a complex, multi-stage process depending on both endogenous and exogenous factors. In the past years, DNA mutations provided important clues to the comprehension of the molecular pathways involved in numerous cancers. Recently, post-transcriptional modification events, such as RNA editing, are emerging as new players in several human diseases, including tumours. A-to-I RNA editing changes the nucleotide sequence of target RNAs, introducing A-to-I/G "mutations". Since ADAR enzymes catalyse this nucleotide conversion, their expression/activity is essential and finely regulated in normal cells. This review summarizes the available knowledge on A-to-I RNA editing in the cancer field, giving a new view on how ADARs may play a role in carcinogenesis.


Asunto(s)
Adenosina Desaminasa/metabolismo , Neoplasias/enzimología , Neoplasias/genética , Edición de ARN , ARN Neoplásico/genética , Biocatálisis , Humanos , Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Proteínas de Unión al ARN
14.
PLoS One ; 6(1): e16366, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21297984

RESUMEN

Human testis development starts from around 42 days post conception with a transient wave of SRY expression followed by up-regulation of testis specific genes and a distinct set of morphological, paracrine and endocrine events. Although anatomical changes in the ovary are less marked, a distinct sub-set of ovary specific genes are also expressed during this time. The furin-domain containing peptide R-spondin1 (RSPO1) has recently emerged as an important regulator of ovary development through up-regulation of the WNT/ß-catenin pathway to oppose testis formation. Here, we show that RSPO1 is upregulated in the ovary but not in the testis during critical early stages of gonad development in humans (between 6-9 weeks post conception), whereas the expression of the related genes WNT4 and CTNNB1 (encoding ß catenin) is not significantly different between these tissues. Furthermore, reduced R-spondin1 function in the ovotestis of an individual (46,XX) with a RSPO1 mutation leads to reduced ß-catenin protein and WNT4 mRNA levels, consistent with down regulation of ovarian pathways. Transfection of wild-type RSPO1 cDNA resulted in weak dose-dependent activation of a ß-catenin responsive TOPFLASH reporter (1.8 fold maximum), whereas co-transfection of CTNNB1 (encoding ß-catenin) with RSPO1 resulted in dose-dependent synergistic augmentation of this reporter (approximately 10 fold). Furthermore, R-spondin1 showed strong nuclear localization in several different cell lines. Taken together, these data show that R-spondin1 is upregulated during critical stages of early human ovary development and may function as a tissue-specific amplifier of ß-catenin signaling to oppose testis determination.


Asunto(s)
Ovario/crecimiento & desarrollo , Transducción de Señal , Trombospondinas/genética , beta Catenina/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ovario/embriología , ARN Mensajero , Testículo/embriología , Testículo/crecimiento & desarrollo , Proteínas Wnt/genética , Proteína Wnt4 , beta Catenina/genética
15.
J Gen Virol ; 92(Pt 5): 1228-1232, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21289159

RESUMEN

The adenosine deaminases acting on RNA (ADAR) enzymes catalyse conversion of adenosine to inosine in dsRNA. A positive effect of ADAR1 on human immunodeficiency virus type 1 (HIV-1) replication has recently been reported. Here, we show that another ADAR enzyme, ADAR2, positively affects the replication process of HIV-1. We found that, analogously to ADAR1, ADAR2 enhances the release of progeny virions by an editing-dependent mechanism. However, differently from the ADAR1 enzyme, ADAR2 does not increase the infectious potential of the virus. Importantly, downregulation of ADAR2 in Jurkat cells significantly impairs viral replication. Therefore, ADAR2 shares some but not all proviral functions of ADAR1. These results suggest a novel role of ADAR2 as a viral regulator.


Asunto(s)
Adenosina Desaminasa/metabolismo , VIH-1/patogenicidad , Interacciones Huésped-Patógeno , Provirus/patogenicidad , Replicación Viral , Humanos , Células Jurkat , Proteínas de Unión al ARN
16.
Hum Mutat ; 29(2): 220-6, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18085567

RESUMEN

XX true hermaphroditism, also know as ovotesticular disorder of sexual development (DSD), is a disorder of gonadal development characterized by the presence of both ovarian and testicular tissue in a 46,XX individual. The genetic basis for XX true hermaphroditism and sex reversal syndromes unrelated to SRY translocation is still mostly unclear. We report mutational analysis of the RSPO1 gene in a 46,XX woman with true hermaphroditism, palmoplantar keratoderma, congenital bilateral corneal opacities, onychodystrophy, and hearing impairment. R-spondin1 is a member of the R-spondin protein family and its pivotal role in sex determination has been recently described. We identified a homozygous splice-donor-site mutation in the RSPO1 gene in our patient. We found that the c.286+1G>A mutation led to an aberrantly spliced mRNA (r.95_286del), which is presumably translated into a partially functional protein (p.Ile32_Ile95del). Our case demonstrates for the first time, to our knowledge, that XX true hermaphroditism can be caused by a single gene mutation. The reported findings represent a further step toward a complete understanding of the complex mechanisms leading to DSDs.


Asunto(s)
Homocigoto , Mutación/genética , Trastornos Ovotesticulares del Desarrollo Sexual/genética , Trombospondinas/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Análisis Mutacional de ADN , Femenino , Gónadas/citología , Humanos , Datos de Secuencia Molecular , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Síndrome , Trombospondinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...