Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ambio ; 51(7): 1687-1697, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35092571

RESUMEN

Ecosystem-based management requires understanding of food webs. Consequently, assessment of food web status is mandatory according to the European Union's Marine Strategy Framework Directive (MSFD) for EU Member States. However, how to best monitor and assess food webs in practise has proven a challenging question. Here, we review and assess the current status of food web indicators and food web models, and discuss whether the models can help addressing current shortcomings of indicator-based food web assessments, using the Baltic Sea as an example region. We show that although the MSFD food web assessment was designed to use food web indicators alone, they are currently poorly fit for the purpose, because they lack interconnectivity of trophic guilds. We then argue that the multiple food web models published for this region have a high potential to provide additional coherence to the definition of good environmental status, the evaluation of uncertainties, and estimates for unsampled indicator values, but we also identify current limitations that stand in the way of more formal implementation of this approach. We close with a discussion of which current models have the best capacity for this purpose in the Baltic Sea, and of the way forward towards the combination of measurable indicators and modelling approaches in food web assessments.


Asunto(s)
Ecosistema , Cadena Alimentaria , Países Bálticos , Monitoreo del Ambiente , Políticas , Incertidumbre
2.
Sci Total Environ ; 806(Pt 2): 150450, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599959

RESUMEN

Sustainable environmental management needs to consider multiple ecological and societal objectives simultaneously while accounting for the many uncertainties arising from natural variability, insufficient knowledge about the system's behaviour leading to diverging model projections, and changing ecosystem. In this paper we demonstrate how a Bayesian network- based decision support model can be used to summarize a large body of research and model projections about potential management alternatives and climate scenarios for the Baltic Sea. We demonstrate how this type of a model can act as an emulator and ensemble, integrating disciplines such as climatology, biogeochemistry, marine and fisheries ecology as well as economics. Further, Bayesian network models include and present the uncertainty related to the predictions, allowing evaluation of the uncertainties, precautionary management, and the explicit consideration of acceptable risk levels. The Baltic Sea example also shows that the two biogeochemical models frequently used in future projections give considerably different predictions. Further, inclusion of parameter uncertainty of the food web model increased uncertainty in the outcomes and reduced the predicted manageability of the system. The model allows simultaneous evaluation of environmental and economic goals, while illustrating the uncertainty of predictions, providing a more holistic view of the management problem.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Teorema de Bayes , Conservación de los Recursos Naturales , Cadena Alimentaria , Incertidumbre
3.
Ambio ; 48(11): 1337-1349, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31350721

RESUMEN

We developed numerical simulations of potential future ecological states of the Baltic Sea ecosystem at the end of century under five scenarios. We used a spatial food web (Ecospace) model, forced by a physical-biogeochemical model. The scenarios are built on consistent storylines that describe plausible developments of climatic and socioeconomic factors in the Baltic Sea region. Modelled species diversity and fish catches are driven by climate- and nutrient load-related changes in habitat quality and by fisheries management strategies. Our results suggest that a scenario including low greenhouse gas concentrations and nutrient pollution and ecologically focused fisheries management results in high biodiversity and catch value. On the other hand, scenarios envisioning increasing societal inequality or economic growth based on fossil fuels, high greenhouse gas emissions and high nutrient loads result in decreased habitat quality and diminished biodiversity. Under the latter scenarios catches are high but they predominantly consist of lower-valued fish.


Asunto(s)
Explotaciones Pesqueras , Cadena Alimentaria , Animales , Países Bálticos , Cambio Climático , Ecosistema
4.
PLoS One ; 14(1): e0211320, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30689653

RESUMEN

Different ecosystem models often provide contrasting predictions (model uncertainty), which is perceived to be a major challenge impeding their use to support ecosystem-based fisheries management (EBFM). The focus of this manuscript is to examine the extent of model disagreements which could impact management advice for EBFM in the central Baltic Sea. We compare how much three models (EwE, Gadget and a multispecies stock production model) differ in 1) their estimates of fishing mortality rates (Fs) satisfying alternative hypothetical management scenario objectives and 2) the outcomes of those scenarios in terms of performance indicators (spawning stock biomasses, catches, profits). Uncertainty in future environmental conditions affecting fish was taken into account by considering two seal population growth scenarios and two nutrient load scenarios. Differences in the development of the stocks, yields and profits exist among the models but the general patterns are also sufficiently similar to appear promising in the context of strategic fishery advice. Thus, we suggest that disagreements among the ecosystem models will not impede their use for providing strategic advice on how to reach management objectives that go beyond the traditional maximum yield targets and for informing on the potential consequences of pursuing such objectives. This is especially true for scenarios aiming at exploiting forage fish sprat and herring, for which the agreement was the largest among our models. However, the quantitative response to altering fishing pressure differed among models. This was due to the diverse environmental covariates and the different number of trophic relationships and their functional forms considered in the models. This suggests that ecosystem models can be used to provide quantitative advice only after more targeted research is conducted to gain a deeper understanding into the relationship between trophic links and fish population dynamics in the Baltic Sea.


Asunto(s)
Explotaciones Pesqueras , Animales , Países Bálticos , Biomasa , Peces/crecimiento & desarrollo , Modelos Económicos , Océanos y Mares
5.
Ambio ; 48(6): 552-564, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30536186

RESUMEN

Seal populations are recovering in many regions around the world and, consequently, they are increasingly interacting with fisheries. We used an Ecopath with Ecosim model for the offshore Central Baltic Sea to investigate the interactions between the changes in fish stocks and grey seal (Halichoerus grypus) population under different fishing and environmental scenarios for the twenty-first century. The assumed climate, eutrophication and cod (Gadus morhua) fisheries scenarios modified seal predation impacts on fish. Fish biomass and catches are more affected by fishing mortality and the environment than by seal predation. Our results highlight that the impacts of the increasing seal population on lower trophic levels are complex; thus, we emphasize the need to consider a range of possible ecosystem contexts when evaluating potential impacts of top predators. Finally, we suggest that an increasing seal population is not likely to hinder the preservation of the main Baltic fish stocks.


Asunto(s)
Explotaciones Pesqueras , Phocidae , Animales , Países Bálticos , Ecosistema , Conducta Predatoria
6.
PLoS One ; 12(11): e0186830, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29131850

RESUMEN

Biomass reconstructions to pre-assessment periods for commercially important and exploitable fish species are important tools for understanding long-term processes and fluctuation on stock and ecosystem level. For some stocks only fisheries statistics and fishery dependent data are available, for periods before surveys were conducted. The methods for the backward extension of the analytical assessment of biomass for years for which only total catch volumes are available were developed and tested in this paper. Two of the approaches developed apply the concept of the surplus production rate (SPR), which is shown to be stock density dependent if stock dynamics is governed by classical stock-production models. The other approach used a modified form of the Schaefer production model that allows for backward biomass estimation. The performance of the methods was tested on the Arctic cod and North Sea herring stocks, for which analytical biomass estimates extend back to the late 1940s. Next, the methods were applied to extend biomass estimates of the North-east Atlantic mackerel from the 1970s (analytical biomass estimates available) to the 1950s, for which only total catch volumes were available. For comparison with other methods which employs a constant SPR estimated as an average of the observed values, was also applied. The analyses showed that the performance of the methods is stock and data specific; the methods that work well for one stock may fail for the others. The constant SPR method is not recommended in those cases when the SPR is relatively high and the catch volumes in the reconstructed period are low.


Asunto(s)
Biomasa , Explotaciones Pesqueras/estadística & datos numéricos , Animales , Océano Atlántico , Modelos Teóricos
7.
PLoS One ; 8(10): e75439, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24116045

RESUMEN

Several marine ecosystems under anthropogenic pressure have experienced shifts from one ecological state to another. In the central Baltic Sea, the regime shift of the 1980s has been associated with food-web reorganization and redirection of energy flow pathways. These long-term dynamics from 1974 to 2006 have been simulated here using a food-web model forced by climate and fishing. Ecological network analysis was performed to calculate indices of ecosystem change. The model replicated the regime shift. The analyses of indicators suggested that the system's resilience was higher prior to 1988 and lower thereafter. The ecosystem topology also changed from a web-like structure to a linearized food-web.


Asunto(s)
Ecosistema , Modelos Teóricos , Océanos y Mares , Animales , Biomasa , Cadena Alimentaria
8.
Glob Chang Biol ; 19(11): 3327-42, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23818413

RESUMEN

Changes in climate, in combination with intensive exploitation of marine resources, have caused large-scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient-climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat-dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod-dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem-based management context.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Modelos Teóricos , Animales , Copépodos , Peces , Océanos y Mares , Fitoplancton , Zooplancton
9.
Ecol Appl ; 23(4): 742-54, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23865226

RESUMEN

Natural resource management requires approaches to understand and handle sources of uncertainty in future responses of complex systems to human activities. Here we present one such approach, the "biological ensemble modeling approach," using the Eastern Baltic cod (Gadus morhua callarias) as an example. The core of the approach is to expose an ensemble of models with different ecological assumptions to climate forcing, using multiple realizations of each climate scenario. We simulated the long-term response of cod to future fishing and climate change in seven ecological models ranging from single-species to food web models. These models were analyzed using the "biological ensemble modeling approach" by which we (1) identified a key ecological mechanism explaining the differences in simulated cod responses between models, (2) disentangled the uncertainty caused by differences in ecological model assumptions from the statistical uncertainty of future climate, and (3) identified results common for the whole model ensemble. Species interactions greatly influenced the simulated response of cod to fishing and climate, as well as the degree to which the statistical uncertainty of climate trajectories carried through to uncertainty of cod responses. Models ignoring the feedback from prey on cod showed large interannual fluctuations in cod dynamics and were more sensitive to the underlying uncertainty of climate forcing than models accounting for such stabilizing predator-prey feedbacks. Yet in all models, intense fishing prevented recovery, and climate change further decreased the cod population. Our study demonstrates how the biological ensemble modeling approach makes it possible to evaluate the relative importance of different sources of uncertainty in future species responses, as well as to seek scientific conclusions and sustainable management solutions robust to uncertainty of food web processes in the face of climate change.


Asunto(s)
Monitoreo del Ambiente , Explotaciones Pesqueras , Gadus morhua/fisiología , Modelos Biológicos , Animales , Biomasa , Cambio Climático , Conservación de los Recursos Naturales , Océanos y Mares , Dinámica Poblacional , Temperatura , Factores de Tiempo
10.
Ambio ; 41(6): 613-25, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22926883

RESUMEN

Models that can project ecosystem dynamics under changing environmental conditions are in high demand. The application of such models, however, requires model validation together with analyses of model uncertainties, which are both often overlooked. We carried out a simplified model uncertainty and sensitivity analysis on an Ecopath with Ecosim food-web model of the Baltic Proper (BaltProWeb) and found the model sensitive to both variations in the input data of pre-identified key groups and environmental forcing. Model uncertainties grew particularly high in future climate change scenarios. For example, cod fishery recommendations that resulted in viable stocks in the original model failed after data uncertainties were introduced. In addition, addressing the trophic control dynamics produced by the food-web model proved as a useful tool for both model validation, and for studying the food-web function. These results indicate that presenting model uncertainties is necessary to alleviate ecological surprises in marine ecosystem management.


Asunto(s)
Cadena Alimentaria , Agua de Mar , Incertidumbre , Países Bálticos , Biomasa , Explotaciones Pesqueras , Modelos Teóricos , Océanos y Mares
11.
Ambio ; 41(6): 626-36, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22926884

RESUMEN

Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated with the fish population model, and by the source of global climate data used by regional models. Knowledge of processes and biases could reduce these uncertainties.


Asunto(s)
Cambio Climático , Peces , Animales , Países Bálticos , Modelos Teóricos , Océanos y Mares , Dinámica Poblacional , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...