Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
Adv Exp Med Biol ; 1461: 3-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39289270

RESUMEN

Somatosensory neurons can sense external temperature by converting sensation of temperature information to neural activity via afferent input to the central nervous system. Various populations of somatosensory neurons have specialized gene expression, including expression of thermosensitive transient receptor potential (TRP) ion channels. Thermosensitive TRP channels are responsible for thermal transduction at the peripheral ends of somatosensory neurons and can sense a wide range of temperatures. Here we focus on several thermosensitive TRP channels including TRPV1, TRPV4, TRPM2, TRPM3, TRPM8, TRPC5, and TRPA1 in sensory neurons. TRPV3, TRPV4, and TRPC5 are also involved in somatosensation in nonneuronal cells and tissues. In particular, we discuss whether skin senses ambient temperatures through TRPV3 and TRPV4 activation in skin keratinocytes and the involvement of TRPM2 expressed by hypothalamic neurons in thermosensation in the brain.


Asunto(s)
Sensación Térmica , Canales de Potencial de Receptor Transitorio , Humanos , Sensación Térmica/fisiología , Sensación Térmica/genética , Animales , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/fisiología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Piel/metabolismo , Piel/inervación , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Queratinocitos/metabolismo
2.
Nat Commun ; 15(1): 6689, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107321

RESUMEN

Transient Receptor Potential Vanilloid 1 (TRPV1) plays a central role in pain sensation and is thus an attractive pharmacological drug target. SAF312 is a potent, selective, and non-competitive antagonist of TRPV1 and shows promising potential in treating ocular surface pain. However, the precise mechanism by which SAF312 inhibits TRPV1 remains poorly understood. Here, we present the cryo-EM structure of human TRPV1 in complex with SAF312, elucidating the structural foundation of its antagonistic effects on TRPV1. SAF312 binds to the vanilloid binding pocket, preventing conformational changes in S4 and S5 helices, which are essential for channel gating. Unexpectedly, a putative cholesterol was found to contribute to SAF312's inhibition. Complemented by mutagenesis experiments and molecular dynamics simulations, our research offers substantial mechanistic insights into the regulation of TRPV1 by SAF312, highlighting the interplay between the antagonist and cholesterol in modulating TRPV1 function. This work not only expands our understanding of TRPV1 inhibition by SAF312 but also lays the groundwork for further developments in the design and optimization of TRPV1-related therapies.


Asunto(s)
Colesterol , Microscopía por Crioelectrón , Simulación de Dinámica Molecular , Canales Catiónicos TRPV , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Colesterol/metabolismo , Humanos , Sitios de Unión , Células HEK293 , Unión Proteica
3.
Elife ; 132024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963781

RESUMEN

Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.


Stress, spicy foods and elevated temperatures can all trigger specialized gland cells to move water to the skin ­ in other words, they can make us sweat. This process is one of the most important ways by which our bodies regulate their temperature and avoid life-threatening conditions such as heatstroke. Disorders in which this function is impaired, such as AIGA (acquired idiopathic generalized anhidrosis), pose significant health risks. Finding treatments for sweat-related diseases requires a detailed understanding of the molecular mechanisms behind sweating, which has yet to be achieved. Recent research has highlighted the role of two ion channels, TRPV4 and ANO1, in regulating fluid secretion in glands that produce tears and saliva. These gate-like proteins control how certain ions move in or out of cells, which also influences water movement. Once activated by external stimuli, TRPV4 allows calcium ions to enter the cell, causing ANO1 to open and chloride ions to leave. This results in water also exiting the cell through dedicated channels, before being collected in ducts connected to the outside of the body. TRPV4, which is activated by heat, is also present in human sweat gland cells. This prompted Kashio et al. to examine the role of these channels in sweat production, focusing on mice as well as AIGA patients. Probing TRPV4, ANO1 and AQP5 (a type of water channel) levels using fluorescent antibodies confirmed that these channels are all found in the same sweat gland cells in the foot pads of mice. Further experiments highlighted that TRPV4 mediates sweat production in these animals via ANO1 activation. As rodents do not regulate their body temperature by sweating, Kashio et al. explored the biological benefits of having sweaty paws. Mice lacking TRPV4 had reduced sweating and were less able to climb a slippery slope, suggesting that a layer of sweat helps improve traction. Finally, Kashio et al. compared samples obtained from healthy volunteers with those from AIGA patients and found that TRPV4 levels are lower in individuals affected by the disease. Overall, these findings reveal new insights into the underlying mechanisms of sweating, with TRPV4 a potential therapeutic target for conditions like AIGA. The results also suggest that sweating could be controlled by local changes in temperature detected by heat-sensing channels such as TRPV4. This would depart from our current understanding that sweating is solely controlled by the autonomic nervous system, which regulates involuntary bodily functions such as saliva and tear production.


Asunto(s)
Sudoración , Canales Catiónicos TRPV , Temperatura , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Ratones , Sudoración/fisiología , Ratones Noqueados , Anoctamina-1/metabolismo , Anoctamina-1/genética , Glándulas Sudoríparas/metabolismo , Humanos , Masculino
4.
Front Neural Circuits ; 18: 1435757, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045140

RESUMEN

Thermoregulation is a fundamental mechanism for maintaining homeostasis in living organisms because temperature affects essentially all biochemical and physiological processes. Effector responses to internal and external temperature cues are critical for achieving effective thermoregulation by controlling heat production and dissipation. Thermoregulation can be classified as physiological, which is observed primarily in higher organisms (homeotherms), and behavioral, which manifests as crucial physiological functions that are conserved across many species. Neuronal pathways for physiological thermoregulation are well-characterized, but those associated with behavioral regulation remain unclear. Thermoreceptors, including Transient Receptor Potential (TRP) channels, play pivotal roles in thermoregulation. Mammals have 11 thermosensitive TRP channels, the functions for which have been elucidated through behavioral studies using knockout mice. Behavioral thermoregulation is also observed in ectotherms such as the fruit fly, Drosophila melanogaster. Studies of Drosophila thermoregulation helped elucidate significant roles for thermoreceptors as well as regulatory actions of membrane lipids in modulating the activity of both thermosensitive TRP channels and thermoregulation. This review provides an overview of thermosensitive TRP channel functions in behavioral thermoregulation based on results of studies involving mice or Drosophila melanogaster.


Asunto(s)
Regulación de la Temperatura Corporal , Canales de Potencial de Receptor Transitorio , Animales , Regulación de la Temperatura Corporal/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/fisiología , Conducta Animal/fisiología , Sensación Térmica/fisiología , Drosophila melanogaster/fisiología , Ratones , Humanos
5.
Cell Calcium ; 121: 102912, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823351

RESUMEN

Anoctamin 1 (ANO1) binds to transient receptor potential (TRP) channels (protein-protein interaction) and then is activated by TRP channels (functional interaction). TRP channels are non-selective cation channels that are expressed throughout the body and play roles in multiple physiological functions. Studies on TRP channels increased after the identification of TRP vanilloid 1 (TRPV1) in 1997. Calcium-activated chloride channel anoctamin 1 (ANO1, also called TMEM16A and DOG1) was identified in 2008. ANO1 plays a major role in TRP channel-mediated functions, as first shown in 2014 with the demonstration of a protein-protein interaction between TRPV4 and ANO1. In cells that co-express TRP channels and ANO1, calcium entering cells through activated TRP channels causes ANO1 activation. Therefore, in many tissues, the physiological functions related to TRP channels are modulated through chloride flux associated with ANO1 activation. In this review, we summarize the latest understanding of TRP-ANO1 interactions, particularly interaction of ANO1 with TRPV4, TRP canonical 6 (TRPC6), TRPV3, TRPV1, and TRPC2 in the salivary glands, blood vessels, skin keratinocytes, primary sensory neurons, and vomeronasal organs, respectively.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Humanos , Animales , Canales de Potencial de Receptor Transitorio/metabolismo , Anoctaminas/metabolismo , Unión Proteica , Anoctamina-1/metabolismo
6.
Bioessays ; 46(7): e2400047, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769699

RESUMEN

Recent insights reveal the significant role of TRPV3 in warmth sensation. A novel finding elucidated how thermosensation is affected by TRPV3 membrane abundance that is modulated by the transmembrane protein TMEM79. TRPV3 is a warmth-sensitive ion channel predominantly expressed in epithelial cells, particularly skin keratinocytes. Multiple studies investigated the roles of TRPV3 in cutaneous physiology and pathophysiology. TRPV3 activation by innocuous warm temperatures in keratinocytes highlights its significance in temperature sensation, but whether TRPV3 directly contributes to warmth sensations in vivo remains controversial. This review explores the electrophysiological and structural properties of TRPV3 and how modulators affect its intricate regulatory mechanisms. Moreover, we discuss the multifaceted involvement of TRPV3 in skin physiology and pathology, including barrier formation, hair growth, inflammation, and itching. Finally, we examine the potential of TRPV3 as a therapeutic target for skin diseases and highlight its diverse role in maintaining skin homeostasis.


Asunto(s)
Homeostasis , Queratinocitos , Piel , Canales Catiónicos TRPV , Canales Catiónicos TRPV/metabolismo , Humanos , Animales , Piel/metabolismo , Queratinocitos/metabolismo , Sensación Térmica/fisiología , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/tratamiento farmacológico
7.
Adv Sci (Weinh) ; 11(25): e2401583, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38659239

RESUMEN

The nonselective calcium-permeable Transient Receptor Potential Cation Channel Subfamily V Member4 (TRPV4) channel regulates various physiological activities. Dysfunction of TRPV4 is linked to many severe diseases, including edema, pain, gastrointestinal disorders, lung diseases, and inherited neurodegeneration. Emerging TRPV4 antagonists show potential clinical benefits. However, the molecular mechanisms of TRPV4 antagonism remain poorly understood. Here, cryo-electron microscopy (cryo-EM) structures of human TRPV4 are presented in-complex with two potent antagonists, revealing the detailed binding pockets and regulatory mechanisms of TRPV4 gating. Both antagonists bind to the voltage-sensing-like domain (VSLD) and stabilize the channel in closed states. These two antagonists induce TRPV4 to undergo an apparent fourfold to twofold symmetry transition. Moreover, it is demonstrated that one of the antagonists binds to the VSLD extended pocket, which differs from the canonical VSLD pocket. Complemented with functional and molecular dynamics simulation results, this study provides crucial mechanistic insights into TRPV4 regulation by small-molecule antagonists, which may facilitate future drug discovery targeting TRPV4.


Asunto(s)
Microscopía por Crioelectrón , Canales Catiónicos TRPV , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Humanos , Microscopía por Crioelectrón/métodos , Simulación de Dinámica Molecular , Sitios de Unión
8.
Exp Dermatol ; 33(3): e15021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429832

RESUMEN

Langerhans cells (LCs) are mainly present in the epidermis and mucosa, and have important roles during skin infection. Migration of LCs to lymph nodes is essential for antigen presentation. However, due to the difficulties in isolating and culturing human LCs, it is not fully understood how LCs move and interact with the extracellular matrix (ECM) through their adhesion molecules such as integrin, during the immune responses. In this study, we aimed to investigate LC motility, cell shape and the role of integrin under inflammatory conditions using monocyte-derived Langerhans cells (moLCs) as a model. As a result, lipopolysaccharide (LPS) stimulation increased adhesion on fibronectin coated substrate and integrin α5 expression in moLCs. Time-lapse imaging of moLCs revealed that stimulation with LPS elongated cell shape, whilst decreasing their motility. Additionally, this decrease in motility was not observed when pre-treated with a neutralising antibody targeting integrin α5. Together, our data suggested that activation of LCs decreases their motility by promoting integrin α5 expression to enhance their affinity to the fibronectin, which may contribute to their migration during inflammation.


Asunto(s)
Integrina alfa5 , Células de Langerhans , Humanos , Fibronectinas/metabolismo , Inmunidad , Integrina alfa5/metabolismo , Integrinas/metabolismo , Lipopolisacáridos/farmacología , Monocitos
9.
Nat Commun ; 15(1): 1660, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396085

RESUMEN

Animals must sense and acclimatize to environmental temperatures for survival, yet their thermosensing mechanisms other than transient receptor potential (TRP) channels remain poorly understood. We identify a trimeric G protein-coupled receptor (GPCR), SRH-40, which confers thermosensitivity in sensory neurons regulating temperature acclimatization in Caenorhabditis elegans. Systematic knockdown of 1000 GPCRs by RNAi reveals GPCRs involved in temperature acclimatization, among which srh-40 is highly expressed in the ADL sensory neuron, a temperature-responsive chemosensory neuron, where TRP channels act as accessorial thermoreceptors. In vivo Ca2+ imaging demonstrates that an srh-40 mutation reduced the temperature sensitivity of ADL, resulting in supranormal temperature acclimatization. Ectopically expressing SRH-40 in a non-warmth-sensing gustatory neuron confers temperature responses. Moreover, temperature-dependent SRH-40 activation is reconstituted in Drosophila S2R+ cells. Overall, SRH-40 may be involved in thermosensory signaling underlying temperature acclimatization. We propose a dual thermosensing machinery through a GPCR and TRP channels in a single sensory neuron.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Temperatura , Células Receptoras Sensoriales/fisiología , Proteínas de Caenorhabditis elegans/genética , Aclimatación/genética , Receptores Acoplados a Proteínas G/genética
10.
J Physiol Sci ; 74(1): 9, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331738

RESUMEN

There are a lot of temperature-sensitive proteins including transient receptor potential (TRP) channels. Some TRP channels are temperature receptors having specific activation temperatures in vitro that are within the physiological temperature range. Mice deficient in specific TRP channels show abnormal thermal behaviors, but the role of TRP channels in these behaviors is not fully understood. The Thermal Gradient Ring is a new apparatus that allows mice to freely move around the ring floor and not stay in a corner. The system can analyze various factors (e.g., 'Spent time', 'Travel distance', 'Moving speed', 'Acceleration') associated with temperature-dependent behaviors of TRP-deficient mice. For example, the Ring system clearly discriminated differences in temperature-dependent phenotypes between mice with diabetic peripheral neuropathy and TRPV1-/- mice, and demonstrated the importance of TRPV3 in temperature detection in skin. Studies using the Thermal Gradient Ring system can increase understanding of the molecular basis of thermal behaviors in mice and in turn help develop strategies to affect responses to different temperature conditions in humans.


Asunto(s)
Neuropatías Diabéticas , Canales de Potencial de Receptor Transitorio , Humanos , Ratones , Animales , Temperatura , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Piel/metabolismo
11.
Nat Commun ; 14(1): 4104, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474531

RESUMEN

TRPV3, a non-selective cation transient receptor potential (TRP) ion channel, is activated by warm temperatures. It is predominantly expressed in skin keratinocytes, and participates in various somatic processes. Previous studies have reported that thermosensation in mice lacking TRPV3 was impaired. Here, we identified a transmembrane protein, TMEM79, that acts as a negative regulator of TRPV3. Heterologous expression of TMEM79 was capable of suppressing TRPV3-mediated currents in HEK293T cells. In addition, TMEM79 modulated TRPV3 translocalization and promoted its degradation in the lysosomes. TRPV3-mediated currents and Ca2+ influx were potentiated in primary mouse keratinocytes lacking TMEM79. Furthermore, TMEM79-deficient male mice preferred a higher temperature than did wild-type mice due to elevated TRPV3 function. Our study revealed unique interactions between TRPV3 and TMEM79, both in vitro and in vivo. These findings support roles for TMEM79 and TRPV3 in thermosensation.


Asunto(s)
Queratinocitos , Piel , Animales , Humanos , Masculino , Ratones , Células HEK293 , Calor , Queratinocitos/metabolismo , Piel/metabolismo , Temperatura , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
12.
Biol Pharm Bull ; 46(7): 939-945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37394645

RESUMEN

Transient receptor potential (TRP) channels play a significant role in taste perception. TRP ankyrin 1 (TRPA1) is present in the afferent sensory neurons and is activated by food-derived ingredients, such as Japanese horseradish, cinnamon, and garlic. The present study aimed to investigate the expression of TRPA1 in taste buds, and determine its functional roles in taste perception using TRPA1-deficient mice. In circumvallate papillae, TRPA1 immunoreactivity colocalised with P2X2 receptor-positive taste nerves but not with type II or III taste cell markers. Behavioural studies showed that TRPA1 deficiency significantly reduced sensitivity to sweet and umami tastes, but not to salty, bitter, and sour tastes, compared to that in wild-type animals. Furthermore, administration of the TRPA1 antagonist HC030031 significantly decreased taste preference to sucrose solution compared to that in the vehicle-treated group in the two-bottle preference tests. TRPA1 deficiency did not affect the structure of circumvallate papillae or the expression of type II or III taste cell and taste nerve markers. Adenosine 5'-O-(3-thio)triphosphate evoked inward currents did not differ between P2X2- and P2X2/TRPA1-expressing human embryonic kidney 293T cells. TRPA1-deficient mice had significantly decreased c-fos expression in the nucleus of the solitary tract in the brain stem following sucrose stimulation than wild-type mice. Taken together, the current study suggested that TRPA1 in the taste nerve contributes to the sense of sweet taste in mice.


Asunto(s)
Papilas Gustativas , Percepción del Gusto , Ratones , Humanos , Animales , Gusto/fisiología , Ancirinas/metabolismo , Papilas Gustativas/metabolismo , Sacarosa
13.
Biochem Biophys Res Commun ; 654: 1-9, 2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-36871485

RESUMEN

The skin is a protective interface between the internal organs and environment and functions not only as a physical barrier but also as an immune organ. However, the immune system in the skin is not fully understood. A member of the thermo-sensitive transient receptor potential (TRP) channel family, TRPM4, which acts as a regulatory receptor in immune cells, was recently reported to be expressed in human skin and keratinocytes. However, the function of TRPM4 in immune responses in keratinocytes has not been investigated. In this study, we found that treatment with BTP2, a known TRPM4 agonist, reduced cytokine production induced by tumor necrosis factor (TNF) α in normal human epidermal keratinocytes and in immortalized human epidermal keratinocytes (HaCaT cells). This cytokine-reducing effect was not observed in TRPM4-deficient HaCaT cells, indicating that TRPM4 contributed to the control of cytokine production in keratinocytes. Furthermore, we identified aluminum potassium sulfate, as a new TRPM4 activating agent. Aluminum potassium sulfate reduced Ca2+ influx by store-operated Ca2+ entry in human TRPM4-expressing HEK293T cells. We further confirmed that aluminum potassium sulfate evoked TRPM4-mediated currents, showing direct evidence for TRPM4 activation. Moreover, treatment with aluminum potassium sulfate reduced cytokine expression induced by TNFα in HaCaT cells. Taken together, our data suggested that TRPM4 may serve as a new target for the treatment of skin inflammatory reactions by suppressing the cytokine production in keratinocytes, and aluminum potassium sulfate is a useful ingredient to prevent undesirable skin inflammation through TRPM4 activation.


Asunto(s)
Dermatitis , Canales Catiónicos TRPM , Humanos , Células HEK293 , Queratinocitos/metabolismo , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inmunidad , Canales Catiónicos TRPM/metabolismo
14.
Sci Rep ; 13(1): 4271, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922541

RESUMEN

Bitterness is an important physiological function in the defense responses to avoid toxic foods. The taste receptor 2 family is well known to mediate bitter taste perception in Type II taste cells. Here, we report that the polycystic kidney disease 2-like 1 (PKD2L1) channel is a novel sensor for the bitter aftertaste in Type III taste cells. The PKD2L1 channel showed rebound activation after the washout of quinine, a bitter tastant, in electrophysiological whole-cell recordings of the PKD2L1-expressing HEK293T cells and Ca2+-imaging analysis of Type III taste cells isolated from wild-type PKD2L1 mice. In the short-term two-bottle preference and lick tests in vivo, the wild-type mice avoided normal water while the PKD2L1-knockout mice preferred normal water after they ingested the quinine-containing water. These results may explain the new mechanism of the quinine-triggered bitter aftertaste perception in Type III taste cells.


Asunto(s)
Canales de Calcio , Receptores de Superficie Celular , Gusto , Animales , Humanos , Ratones , Canales de Calcio/genética , Células HEK293 , Ratones Noqueados , Quinina/farmacología , Receptores de Superficie Celular/genética , Gusto/fisiología , Percepción del Gusto
16.
Commun Biol ; 6(1): 88, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690845

RESUMEN

Transient receptor potential vanilloid 3 (TRPV3) belongs to the TRP ion channel super family and functions as a nonselective cation channel that is highly permeable to calcium. This channel is strongly expressed in skin keratinocytes and is involved in warmth sensation, itch, wound healing and secretion of several cytokines. Previous studies showed that anoctamin1 (ANO1), a calcium-activated chloride channel, was activated by calcium influx through TRPV1, TRPV4 or TRPA1 and that these channel interactions were important for TRP channel-mediated physiological functions. We found that ANO1 was expressed by normal human epidermal keratinocytes (NHEKs). We observed that ANO1 mediated currents upon TRPV3 activation of NHEKs and mouse skin keratinocytes. Using an in vitro wound-healing assay, we observed that either a TRPV3 blocker, an ANO1 blocker or low chloride medium inhibited cell migration and proliferation through p38 phosphorylation, leading to cell cycle arrest. These results indicated that chloride influx through ANO1 activity enhanced wound healing by keratinocytes.


Asunto(s)
Calcio , Cloruros , Animales , Ratones , Humanos , Calcio/metabolismo , Cloruros/metabolismo , Canales Iónicos/metabolismo , Queratinocitos/metabolismo , Cicatrización de Heridas , Canales Catiónicos TRPV/metabolismo , Anoctamina-1/metabolismo , Proteínas de Neoplasias/metabolismo
17.
Immunohorizons ; 7(1): 81-96, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36645854

RESUMEN

The pathology of skin immune diseases such as atopic dermatitis is closely related to the overproduction of cytokines by macrophages. Although the pathological functions of macrophages in skin are known, mechanisms of how they detect the tissue environment remain unknown. TRPV4, a nonselective cation channel with high Ca2+ permeability, is activated at physiological temperatures from 27 to 35°C and involved in the functional control of macrophages. However, the relationship between TRPV4 function in macrophages and skin immune disease is unclear. In this study, we demonstrate that TRPV4 activation inhibits NF-κB signaling, resulting in the suppression of IL-1ß production in both human primary monocytes and macrophages derived from human primary monocytes. A TRPV4 activator also inhibited the differentiation of human primary monocytes into GM-CSF M1 macrophages but not M-CSF M2 macrophages. We also observed a significant increase in the number of inducible NO synthase-positive/TRPV4-negative dermal macrophages in atopic dermatitis compared with healthy human skin specimens. Our findings provide insight into the physiological relevance of TRPV4 to the regulation of macrophages during homeostasis maintenance and raise the potential for TRPV4 to be an anti-inflammatory target.


Asunto(s)
Dermatitis Atópica , Humanos , Dermatitis Atópica/patología , Canales Catiónicos TRPV/fisiología , Macrófagos , Citocinas/metabolismo , Antiinflamatorios
18.
Front Mol Neurosci ; 16: 1249715, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188198

RESUMEN

Transient receptor potential (TRP) channels are primary sensory molecules in animals and are involved in detecting a diverse range of physical and chemical cues in the environments. Considering the crucial role of TRPA1 channels in nocifensive behaviors and aversive responses across various insect species, activators of TRPA1 are promising candidates for insect pest control. In this study, we demonstrate that 2-methylthiazoline (2MT), an artificial volatile thiazoline compound originally identified as a stimulant for mouse TRPA1, can be utilized as a novel repellent for fruit flies, Drosophila melanogaster. We observed that 2MT induced strong, dose-dependent avoidance behaviors in adult males, regardless of their feeding states, as well as egg laying behavior in females. These aversive responses were mediated by contact chemosensation via TrpA1 and olfaction via odorant receptors. Knocking down TrpA1 revealed the essential roles of bitter taste neurons and nociceptive neurons in the legs and labellum. Furthermore, among five isoforms, TrpA1-C and TrpA1-D exclusively contributed to the aversiveness of 2MT. We also discovered that these isoforms were directly activated by 2MT through covalent modification of evolutionarily conserved cysteine residues. In conclusion, we have identified 2MT as a stimulant for multiple sensory pathways, triggering aversive behaviors in fruit flies. We propose that 2MT and related chemicals may serve as potential resources for developing novel insect repellents.

19.
J Physiol Sci ; 72(1): 31, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451105

RESUMEN

The taste is biologically of intrinsic importance. It almost momentarily perceives environmental stimuli for better survival. In the early 2000s, research into taste reception was greatly developed with discovery of the receptors. However, the mechanism of salt taste reception is not fully elucidated yet and many questions still remain. At present, next-generation sequencing and genome-editing technologies are available which would become pivotal tools to elucidate the remaining issues. Here we review current mechanisms of salt taste reception in particular and characterize the properties of transmembrane channel-like 4 as a novel salt taste-related molecule that we found using these sophisticated tools.


Asunto(s)
Gusto
20.
J Neurogastroenterol Motil ; 28(4): 693-705, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36250375

RESUMEN

Background/Aims: Several studies have assessed the effect of cool temperature on colonic peristalsis. Transient receptor potential melastatin 8 (TRPM8) is a temperature-sensitive ion channel activated by mild cooling expressed in the colon. We examined the antispasmodic effect of cool temperature on colonic peristalsis in a prospective, randomized, single-blind trial and based on the video imaging and intraluminal pressure of the proximal colon in rats and TRPM8-deficient mice. Methods: In the clinical trial, we randomly assigned a total of 94 patients scheduled to undergo colonoscopy to 2 groups: the mildly cool water (n = 47) and control (n = 47) groups. We used 20 mL of 15°C water for the mildly cool water. The primary outcome was the proportion of subjects with improved peristalsis after treatment. In the rodent proximal colon, we evaluated the intraluminal pressure and performed video imaging of the rodent proximal colon with cool water administration into the colonic lumen. Clinical trial registry website (Trial No. UMIN-CTR; UMIN000030725). Results: In the randomized controlled trial, after treatment, the proportion of subjects with no peristalsis with cool water was significantly higher than that in the placebo group (44.7% vs 23.4%; P < 0.05). In the rodent colon model, cool temperature water was associated with a significant decrease in colonic peristalsis through its suppression of the ratio of peak frequency (P < 0.05). Cool temperature-treated TRPM8-deficient mice did not show a reduction in colonic peristalsis compared with wild-type mice. Conclusion: For the first time, this study demonstrates that cool temperature-dependent suppression of colonic peristalsis may be associated with TRPM8 activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...