Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Anim ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261059

RESUMEN

Here, we report the identification of causative genes for limb-shortening in individuals repeatedly found in a population of severely immunodeficient NOG mice maintained via sibling mating. First, we conducted a pedigree survey to determine whether limb-shortening was a recessive genetic trait and then identified it using a crossing test. Simultaneously, the symptoms were identified in detail using pathological analysis. Accordingly, a mouse strain exhibiting a recessive trait caused by a single gene trait and similar symptoms was identified, suggesting growth differentiation factor 5 (Gdf5) as a causative gene. Genome walking via PCR and sequence analysis of Gdf5 revealed a deletion of approximately 1.1 kb from the latter half of exon 2 of Gdf5. Furthermore, we established NOG-Gdf5bpJic by removing other modified genes and confirmed that the inheritance pattern was reconfirmed semi-dominant. In recent years, regenerative medicine research using immunodeficient mice has been actively conducted, and this murine strain is expected to contribute to niche stem cell analysis and transplantation research.

2.
Exp Anim ; 72(3): 402-412, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37019665

RESUMEN

Humanized mice are widely used to study the human immune system in vivo and investigate therapeutic targets for various human diseases. Immunodeficient NOD/Shi-scid-IL2rγnull (NOG) mice transferred with human hematopoietic stem cells are a useful model for studying human immune systems and analyzing engrafted human immune cells. The gut microbiota plays a significant role in the development and function of immune cells and the maintenance of immune homeostasis; however, there is currently no available animal model that has been reconstituted with human gut microbiota and immune systems in vivo. In this study, we established a new model of CD34+ cell-transferred humanized germ-free NOG mice using an aseptic method. Flow cytometric analysis revealed that the germ-free humanized mice exhibited a lower level of human CD3+ T cells than the SPF humanized mice. Additionally, we found that the human CD3+ T cells slightly increased after transplanting human gut microbiota into the germ-free humanized mice, suggesting that the human microbiota supports T cell proliferation or maintenance in humanized mice colonized by the gut microbiota. Consequently, the dual-humanized mice may be useful for investigating the physiological role of the gut microbiota in human immunity in vivo and for application as a new humanized mouse model in cancer immunology.


Asunto(s)
Microbioma Gastrointestinal , Sistema Inmunológico , Ratones , Animales , Humanos , Ratones Endogámicos NOD , Células Madre Hematopoyéticas , Modelos Animales de Enfermedad , Ratones SCID
3.
Exp Anim ; 70(2): 177-184, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33239489

RESUMEN

To avoid microbial contamination risk, vinyl film isolators are generally used in animal microbiome experiments involving germ-free (GF) mice and/or gnotobiotic (GB) mice. However, it can take several months to gain expertise in operating the isolator competently. Furthermore, sterilization and sterility testing, which are essential for isolator preparation, can take more than 20 days. Hence, we built an experimental rearing environment that combines an individual ventilation cage system and a bioBUBBLE clean room enclosure to easily set up an experimental animal microbiome environment for animal facilities. In this work, a three-step evaluation was conducted. First, we examined whether GF mice can be maintained in this rearing environment without bacterial contamination. Next, we examined whether GF and GB mice can be maintained without cross-contamination in one individual ventilation cage rack. Finally, we tested whether GF mice can be maintained in a biological safety cabinet controlled by negative pressure. In our series of experiments, no microbial contamination occurred over more than 3 months. These results indicated that our rearing system that combines the individual ventilation cage and bioBUBBLE systems can be used not only for experiments with GF mice but also for Biosafety Level 2 experiments that handle bacteria. Our system can mitigate various disadvantages of using vinyl film isolators. In conclusion, we established an experimental method with improved working time and efficiency compared with those of the previous vinyl isolator method.


Asunto(s)
Crianza de Animales Domésticos/instrumentación , Vida Libre de Gérmenes , Vivienda para Animales , Ratones/microbiología , Microbiota , Experimentación Animal , Animales , Animales de Laboratorio/microbiología , Ratones Endogámicos ICR , Ventilación
4.
Immunol Lett ; 229: 55-61, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33253759

RESUMEN

Humanized mice are widely used to study the human immune system in vivo and develop therapies for various human diseases. Human peripheral blood mononuclear cells (PBMC)-engrafted NOD/Shi-scid IL2rγnull (NOG) mice are useful models for characterization of human T cells. However, the development of graft-versus-host disease (GVHD) limits the use of NOG PBMC models. We previously established a NOG-major histocompatibility complex class I/II double knockout (dKO) mouse model. Although humanized dKO mice do not develop severe GVHD, they have impaired reproductive performance and reduced chimerism of human cells. In this study, we established a novel beta-2 microglobulin (B2m) KO mouse model using CRISPR/Cas9. By crossing B2m KO mice with I-Ab KO mice, we established a modified dKO (dKO-em) mouse model. Reproductivity was slightly improved in dKO-em mice, compared with conventional dKO (dKO-tm) mice. dKO-em mice showed no signs of GVHD after the transfer of human PBMCs; they also exhibited high engraftment efficiency. Engrafted human PBMCs survived significantly longer in the peripheral blood and spleens of dKO-em mice, compared with dKO-tm mice. In conclusion, dKO-em mice might constitute a promising PBMC-based humanized mouse model for the development and preclinical testing of novel therapeutics for human diseases.


Asunto(s)
Sistemas CRISPR-Cas , Trasplante de Células , Técnicas de Inactivación de Genes , Antígenos de Histocompatibilidad/genética , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Animales , Biomarcadores , Trasplante de Células/efectos adversos , Trasplante de Células/métodos , Edición Génica , Marcación de Gen , Sitios Genéticos , Supervivencia de Injerto , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Humanos , Inmunohistoquímica , Inmunofenotipificación , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Modelos Animales , Índice de Severidad de la Enfermedad , Bazo/inmunología , Bazo/metabolismo
5.
Biochem Biophys Res Commun ; 478(3): 1254-60, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27545600

RESUMEN

Most in vivo studies on the conversion to insulin-producing cells with AAV carrying PDX1 gene are performed in rodents. However, there is little information regarding Adeno-associated virus (AAV) carrying PDX1 gene transduced to human liver in vivo because accidental death caused by unpredicted factors cannot be denied, such as the hypoglycemic agent troglitazone with hepatic failure. Here we aim to confirm insulin secretion from human liver transduced with AAV carrying PDX1 gene in vivo and any secondary effect using a humanized liver mouse. As the results, AAV2-PG succeeded to improve the hyperglycemia of STZ-induced diabetic humanized liver mice. Then, the analysis of humanized liver mice revealed that the AAV2-PG was more transducible to humanized liver area than to mouse liver area. In conclusion, the humanized liver mouse model could be used to examine AAV transduction of human hepatocytes in vivo and better predict clinical transduction efficiency than nonhumanized mice.


Asunto(s)
Dependovirus/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/terapia , Terapia Genética , Animales , Diabetes Mellitus Experimental/complicaciones , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/terapia , Insulina/metabolismo , Ratones , Ratones Transgénicos , Transactivadores/metabolismo , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...