Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 3(1): 148-159, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36968222

RESUMEN

Glioma stem cells (GSC) promote the malignancy of glioblastoma (GBM), the most lethal brain tumor. ERK5 belongs to the MAPK family. Here, we demonstrated that MAPK kinase 5 (MEK5)-ERK5-STAT3 pathway plays an essential role in maintaining GSC stemness and tumorigenicity by integrating genetic and pharmacologic manipulation and RNA sequencing analysis of clinical specimens. ERK5 was highly expressed and activated in GSCs. ERK5 silencing by short hairpin RNA in GSCs suppressed the self-renewal potential and GBM malignant growth concomitant with downregulation of STAT3 phosphorylation. Conversely, the activation of the MEK5-ERK5 pathway by introducing ERK5 or MEK5 resulted in increased GSC stemness. The introduction of STAT3 counteracted the GSC phenotypes by ERK5 silencing. Moreover, ERK5 expression and signaling are associated with poor prognosis in patients with GBM with high stem cell properties. Finally, pharmacologic inhibition of ERK5 significantly inhibited GSC self-renewal and GBM growth. Collectively, these findings uncover a crucial role of the MEK5-ERK5-STAT3 pathway in maintaining GSC phenotypes and GBM malignant growth, thereby providing a potential target for GSC-directed therapy. Significance: In this study, we demonstrated that MEK5-ERK5-STAT3 axis plays a critical role in maintaining stemness and tumorigenicity in GSCs by using genetic, pharmacologic, and bioinformatics tools, identifying the MEK5-ERK5-STAT3 axis as a potential target for GSC-directed therapy.


Asunto(s)
Glioblastoma , Glioma , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Glioma/genética , Glioblastoma/genética
2.
J Cell Physiol ; 237(11): 4292-4302, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36161979

RESUMEN

Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L-type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal-onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5-deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1-GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability.


Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1 , Escoliosis , Animales , Ratones , Aminoácidos , Condrocitos/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Escoliosis/genética , Escoliosis/metabolismo , Escoliosis/patología , Modelos Animales de Enfermedad
3.
Stem Cells ; 40(4): 411-422, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35304894

RESUMEN

Extracellular signal-regulated kinase 5 (Erk5) belongs to the mitogen-activated protein kinase (MAPK) family. Previously, we demonstrated that Erk5 directly phosphorylates Smad-specific E3 ubiquitin protein ligase 2 (Smurf2) at Thr249 (Smurf2Thr249) to activate its E3 ubiquitin ligase activity. Although we have clarified the importance of Erk5 in embryonic mesenchymal stem cells (MSCs) on skeletogenesis, its role in adult bone marrow (BM)-MSCs on bone homeostasis remains unknown. Leptin receptor-positive (LepR+) BM-MSCs represent a major source of bone in adult bone marrow and are critical regulators of postnatal bone homeostasis. Here, we identified Erk5 in BM-MSCs as an important regulator of bone homeostasis in adulthood. Bone marrow tissue was progressively osteosclerotic in mice lacking Erk5 in LepR+ BM-MSCs with age, accompanied by increased bone formation and normal bone resorption in vivo. Erk5 deficiency increased the osteogenic differentiation of BM-MSCs along with a higher expression of Runx2 and Osterix, essential transcription factors for osteogenic differentiation, without affecting their stemness in vitro. Erk5 deficiency decreased Smurf2Thr249 phosphorylation and subsequently increased Smad1/5/8-dependent signaling in BM-MSCs. The genetic introduction of the Smurf2T249E mutant (a phosphomimetic mutant) suppressed the osteosclerotic phenotype in Erk5-deficient mice. These findings suggest that the Erk5-Smurf2Thr249 axis in BM-MSCs plays a critical role in the maintenance of proper bone homeostasis by preventing excessive osteogenesis in adult bone marrow.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Células de la Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Homeostasis , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Osteogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...