Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 12(8): 5357-5372, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139977

RESUMEN

With its annually increasing prevalence, non-alcoholic fatty liver disease (NAFLD) has become a serious threat to people's life and health. After a preliminary research, we found that Lactucopicrin has pharmacological effects, such as lowering blood lipids and protecting the liver. Further research showed its significant activation for fatty acid ß-oxidase hydroxyacyl-coenzyme A (CoA) dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA), so we hypothesized that Lactucopicrin could ameliorate lipid accumulation in hepatocytes by promoting fatty acid ß-oxidation. In this study, free fatty acid (FFA)-induced human hepatoblastoma cancer cells (HepG2) were used to establish an in vitro NAFLD model to investigate the molecular basis of Lactucopicrin in regulating lipid metabolism. Staining with Oil red O and measurements of triglyceride (TG) content, fatty acid ß-oxidase (FaßO) activity, reactive oxygen species (ROS) content, mitochondrial membrane potential, and adenosine triphosphate (ATP) content were used to assess the extent to which Lactucopicrin ameliorates lipid accumulation and promotes fatty acid ß-oxidation. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot methods were used to explore the regulatory effects of Lactucopicrin on factors related to fatty acid ß-oxidation. Results showed that Lactucopicrin downregulated phosphorylated mammalian target of rapamycin (P-mTOR) by activating the adenosine monophosphate-activated protein kinase (AMPK) pathway and upregulated the messenger RNA (mRNA) and protein expression levels of coactivators (peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)), transcription factors (peroxisome proliferator-activated receptor α (PPARα) and peroxisome proliferator-activated receptor γ (PPARγ)), and oxidative factors (carnitine palmitoyltransferase 1A (CPT1A) and HADHA). This phenomenon resulted in a significant increase in FaßO activity, ATP content, and JC-1 and a significant decrease in ROS level, TG content, and intracellular lipid droplets. With the addition of Dorsomorphin, all the effects of Lactucopicrin intervention were suppressed. In summary, Lactucopicrin promotes fatty acid ß-oxidation by activating the AMPK pathway, thereby ameliorating FFA-induced intracellular lipid accumulation in HepG2 cells.

2.
Open Life Sci ; 19(1): 20220886, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947764

RESUMEN

Mulberry is a common crop rich in flavonoids, and its leaves (ML), fruits (M), and branches (Ramulus Mori, RM) have medicinal value. In the present study, a total of 118 flavonoid metabolites (47 flavone, 23 flavonol, 16 flavonoid, 8 anthocyanins, 8 isoflavone, 14 flavanone, and 2 proanthocyanidins) and 12 polyphenols were identified by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. The most abundant in ML were 8-C-hexosyl-hesperetin O-hexoside and astragalin, the most abundant in M were 8-C-hexosyl-hesperetin O-hexoside and naringenin, and the most abundant in RM were cyanidin 3-O-galactoside and gallocatechin-gallocatechin. The total flavonoid compositions of ML and RM were essentially the same, but the contents of flavonoid metabolite in more than half of them were higher than those in M. Compared with ML, the contents of flavone and flavonoid in RM and M were generally down-regulated. Each tissue part had a unique flavonoid, which could be used as a marker to distinguish different tissue parts. In this study, the differences between flavonoid metabolite among RM, ML, and M were studied, which provided a theoretical basis for making full use of mulberry resources.

3.
Gut Microbes ; 15(1): 2192155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967529

RESUMEN

Accumulating evidence suggests that the bile acid regulates type 2 diabetes mellitus (T2DM) through gut microbiota-host interactions. However, the mechanisms underlying such interactions have been unclear. Here, we found that glycoursodeoxycholic acid (GUDCA) positively regulates gut microbiota by altering bile acid metabolism. GUDCA in mice resulted in higher taurolithocholic acid (TLCA) level and Bacteroides vulgatus abundance. Together, these changes resulted in the activation of the adipose G-protein-coupled bile acid receptor, GPBAR1 (TGR5) and upregulated expression of uncoupling protein UCP-1, resulting in elevation of white adipose tissue thermogenesis. The anti-T2DM effects of GUDCA are linked with the regulation of the bile acid and gut microbiota composition. This study suggests that altering bile acid metabolism, modifying the gut microbiota may be of value for the treatment of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratones , Animales , Ácidos y Sales Biliares/farmacología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Glucolípidos/farmacología
4.
J Colloid Interface Sci ; 586: 371-380, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33162046

RESUMEN

Commercial graphite with low theoretical capacity cannot meet the ever-increasing requirement demands of lithium-ion batteries (LIBs) caused by the rapid development of electric devices. Rationally designed carbon-based nanomaterials can provide a wide range of possibilities to meet the growing requirements of energy storage. Hence, the porous walnut anchored on carbon fibers with reasonable pore structure, N-self doping (10.2 at%) and novel structure and morphology is designed via interaction of inner layer polyethylene oxide and outer layer polyacrylonitrile and polyvinylpyrrolidone during pyrolysis of the obtained precursor, which is fabricated by coaxial electrospinning. As an electrode material, the as-made sample shows a high discharge capacity of 965.3 mA h g-1 at 0.2 A g-1 in the first cycle, retains a capacity of 819.7 mA h g-1 after 500 cycles, and displays excellent cycling stability (475.2 mA h g-1 at 1 A g-1 after 1000 cycles). Moreover, the capacity of the electrode material still keeps 260.5 mA h g-1 at 5 A g-1 after 1000 cycles. Therefore, the obtained sample has a bright application prospect as a high performance anode material for LIBs. Besides, this design idea paves the way for situ N-enriched carbon material with novel structure and morphology by coaxial electrospinning.

5.
Sci Rep ; 10(1): 7022, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341401

RESUMEN

Coal-based 3D hierarchical porous carbon aerogels (3D HPCAs) has been successfully fabricated from a freeze-drying method and with subsequent of calcination process, using coal oxide as carbon precursors, and PVA as both cross-linking agent and sacrifice template. The 3D HPCAs, using as electrode materials for supercapacitors, display outstanding electrochemical performance. The optimal sample (HPCAs-0.4-800) presents a high specific capacitance of 260 F g-1 at 1 A g-1, and exhibits considerable rate capability with the retention of 81% at 10 A g-1. Notably, HPCAs-0.4-800 shows an excellent cycling stability with 105% of the capacitance retention after 50000 cycles at 10 A g-1, attributing to its unique hierarchical porosity, high surface area up to 1303 m2 g-1, and improved conductivity. This work offers a promising route to synthesize coal-based porous carbon aerogels electrode materials for supercapacitors.

6.
RSC Adv ; 10(19): 11033-11038, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35495344

RESUMEN

N/S co-doped porous carbon spheres (NSPCSs) were prepared by a simple ultrasonic spray pyrolysis (USP) using the mixed solution of coal oxide and l-cysteine, and without a subsequent activation process. The surface properties of carbon materials have been successfully modified by the concurrent incorporation of N and S. So the capacitive performance of NSPCSs was greatly enhanced. It is used as a supercapacitor electrode to achieve a high specific capacitance of 308 F g-1 at a current density of 1 A g-1 and 90.2% capacitance retention even after 10 000 cycles at 5 A g-1. These numerical results show that the supercapacitors based on coal-based carbon materials have great potential in high performance electrochemical energy storage.

7.
RSC Adv ; 9(11): 6184-6192, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35517294

RESUMEN

A green method is designed to obtain hierarchical porous carbon nanofibers from coal. In the work, deionized water, coal, polyvinyl alcohol and Pluronic F127 are used as the aqueous solution, carbon source, spinning assistant and soft template for spinning, respectively. As electrode materials for supercapacitors, the obtained hierarchical porous carbon nanofibers exhibit a high specific capacitance of 265.2 F g-1 at 1.0 A g-1 in 6 M KOH, a good rate performance with a capacitance of 220.3 F g-1 at 20.0 A g-1 with the retention of 83.1% and a superior cycle stability without capacitance loss after 20 000 charge/discharge cycles at 10.0 A g-1. Compared with the carbon nanofibers constructed without Pluronic F127, the enhanced electrochemical performance of the sample benefits from a larger contact surface area and the mesoporous structure formed by decomposition of Pluronic F127 and good structural stability. This work not only provides a green route for high-value utilization of coal in energy storage, but also paves a new way to make hierarchical porous carbon nanofibers from coal for supercapacitor electrodes with high specific capacitance and long cycle life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...