Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Pept Lett ; 30(11): 941-950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37946357

RESUMEN

BACKGROUND: UDP-glucuronosyltransferases (UGTs) play a crucial role in maintaining endobiotic homeostasis and metabolizing xenobiotic compounds, particularly clinical drugs. However, the detailed catalytic mechanism of UGTs has not been fully elucidated due to the limited availability of reliable protein structures. Determining the catalytic domain of human UGTs has proven to be a significant challenge, primarily due to the difficulty in purifying and crystallizing the full-length protein. OBJECTIVES: This study focused on the human UGT2B10 C-terminal cofactor binding domain, aiming to provide structural insights into the fundamental catalytic mechanisms. METHODS: In this study, the C-terminal sugar-donor binding domain of human UGT2B10 was purified and crystallized using the vapor-diffusion method. The resulting UGT2B10 CTD crystals displayed high-quality diffraction patterns, allowing for data collection at an impressive resolution of 1.53 Å using synchrotron radiation. Subsequently, the structure of the UGT2B10 CTD was determined using the molecule replacement method with a homologous structure. RESULTS: The crystals were monoclinic, belonging to the space C2 with unit-cell parameters a = 85.90 Å, b = 58.39 Å, c = 68.87 Å, α = γ = 90°, and ß = 98.138°. The Matthews coefficient VM was determined to be 2.24 Å3 Da-1 (solvent content 46.43%) with two molecules in the asymmetric unit. CONCLUSION: The crystal structure of UGT2B10 CTD was solved at a high resolution of 1.53 Å, revealing a conserved cofactor binding pocket. This is the first study determining the C-terminal cofactor binding domain of human UGT2B10, which plays a key role in additive drug metabolism.


Asunto(s)
Nucleótidos , Azúcares , Humanos , Glucuronosiltransferasa/química , Glucuronosiltransferasa/metabolismo , Dominio Catalítico , Uridina Difosfato
2.
Angew Chem Int Ed Engl ; 60(40): 21959-21965, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34351032

RESUMEN

Benzoylecgonine (BZE) is the major toxic metabolite of cocaine and is responsible for the long-term cocaine-induced toxicity owing to its long residence time in humans. BZE is also the main contaminant following cocaine consumption. Here, we identified the bacterial cocaine esterase (CocE) as a BZE-metabolizing enzyme (BZEase), which can degrade BZE into biological inactive metabolites (ecgonine and benzoic acid). CocE was redesigned by a reactant-state-based enzyme design theory. An encouraging mutant denoted as BZEase2, presented a >400-fold improved catalytic efficiency against BZE compared with wild-type (WT) CocE. In vivo, a single dose of BZEase2 (1 mg kg-1 , IV) could eliminate nearly all BZE within only two minutes, suggesting the enzyme has the potential for cocaine overdose treatment and BZE elimination in the environment by accelerating BZE clearance. The crystal structure of a designed BZEase was also determined.


Asunto(s)
Cocaína/análogos & derivados , Hidrolasas/química , Cocaína/química , Cocaína/metabolismo , Hidrolasas/metabolismo , Modelos Moleculares , Estructura Molecular
3.
Ann Palliat Med ; 10(6): 6936-6947, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34118862

RESUMEN

Cocaine abuse is a serious global public health and social problem, and cocaine detoxification remains a challenge. Benzoylecgonine (BE) is the main toxic metabolite after cocaine consumption, with a longer retention time in the body and environment than cocaine itself. According to many studies, the toxicity of BE to humans is as significant as cocaine itself. Moreover, BE is recognized as an addictive drug contaminant in the environment, especially the freshwater system, leading to worries of its ecotoxicity. Extensive studies on the adverse effects of BE on both humans and ecology have been conducted, showing a marked sub-lethal toxicity of BE to diverse organisms. To eliminate BE in vivo and in vitro, various elimination methods have been developed and their BE removal capacity were evaluated. In this review, we aimed to summarize information in the literature to understand better BE toxicity and elimination that may facilitate the clinical treatment of cocaine abuse. By studying the critical role of BE in cocaine abuse, we propose that the ideal treatment for cocaine abuse should not only detoxify cocaine itself but also remove or degrade BE. Emphasizing the necessity of developing effective BE elimination methods is significant for the development of potential clinical treatments and environmental protections.


Asunto(s)
Cocaína , Cocaína/análogos & derivados , Humanos
4.
PLoS One ; 16(4): e0248781, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33857182

RESUMEN

Human ORP3 belongs to the oxysterol-binding protein (OSBP) family of lipid transfer proteins and is involved in lipid trafficking and cell signaling. ORP3 localizes to the ER-PM interfaces and is implicated in lipid transport and focal adhesion dynamics. Here, we report the 2.6-2.7 Å structures of the ORD (OSBP-related domain) of human ORP3 in apo-form and in complex with phosphatidylinositol 4-phosphate. The ORP3 ORD displays a helix grip ß-barrel fold with a deep hydrophobic pocket which is conserved in the OSBP gene family. ORP3 binds PI(4)P by the residues around tunnel entrance and in the hydrophobic pocket, whereas it lacks sterol binding due to the narrow hydrophobic tunnel. The heterologous expression of the ORDs of human ORP3 or OSBP1 rescued the lethality of seven ORP (yeast OSH1-OSH7) knockout in yeast. In contrast, the PI(4)P-binding site mutant of ORP3 did not complement the OSH knockout cells. The N-terminal PH domain and FFAT motif of ORP3 are involved in protein targeting but are not essential in yeast complementation. This observation suggests that the essential function conserved in the ORPs of yeast and human is mediated by PI(4)P-binding of the ORD domain. This study suggests that the non-vesicular PI(4)P transport is a conserved function of all ORPs in eukaryotes.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/fisiología , Proteínas de Unión a Ácidos Grasos/ultraestructura , Sitios de Unión , Transporte Biológico , Proteínas Portadoras , Proteínas de Unión a Ácidos Grasos/genética , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Dominios Proteicos , Receptores de Esteroides
5.
Biochem Biophys Res Commun ; 520(2): 466-472, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31607485

RESUMEN

The steroidogenic acute regulatory protein (StAR)-related lipid transfer domain-4 (STARD4) is a sterol-binding protein that is involved in cholesterol homeostasis by intracellular sterol transport. In this work, we determined the crystal structures of human STARD4 and its Ω1-loop mutant in apo forms at 1.95 and 1.7 Šresolutions, respectively. The structure of human STARD4 displays a conserved α-helix/ß-grip fold containing a deep hydrophobic pocket. The Ω1-loop which serves as a lid for the hydrophobic pocket has a closed conformation. The shape of the sterol-binding cavity in the closed form is not complementary to accommodate cholesterol, suggesting that a conformational change of the Ω1-loop is essential for sterol binding. The human STARD4 displayed sterol transfer activity between liposomes, and the mutations in the Ω1-loop and the hydrophobic wall abolished the transfer activity. This study confirms the structural conservation of the STARD4 subfamily proteins and the flexibility of the Ω1-loop and helix α4 required for sterol transport.


Asunto(s)
Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/metabolismo , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Esteroles/metabolismo
6.
PLoS One ; 14(2): e0211724, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30721249

RESUMEN

Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a family of lipid transfer proteins conserved in eukaryotes. ORP1 transports cholesterol at the interface between the late endosomes/lysosomes (LELs) and the endoplasmic reticulum (ER). ORP1 is targeted to the endosomal membranes by forming a tripartite complex with the LE GTPase Rab7 and its effector RILP (Rab7-interacting lysosomal protein). Here, we determined the crystal structure of human ORP1 ANK domain in complex with the GTP-bound form of Rab7. ORP1 ANK binds to the helix α3 of Rab7 located away from the switching regions, which makes the interaction independent of the nucleotide-binding state of Rab7. Thus, the effector-interacting switch regions of Rab7 are accessible for RILP binding, allowing formation of the ORP1-Rab7-RILP complex. ORP1 ANK binds to Rab7 and the Rab7-RILP complex with similar micro-molar affinities, which is consistent with the independence binding of ORP1 and RILP to Rab7. The structural model of the ORP1-Rab7-RILP complex correlates with the recruitment of ORP1 at the LEL-ER interface and the role in lipid transport and regulation.


Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Sitios de Unión , Calorimetría , Clonación Molecular , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Humanos , Unión Proteica , Conformación Proteica , Receptores de Esteroides/química , Proteínas de Unión al GTP rab/química , Proteínas de Unión a GTP rab7
7.
Proc Natl Acad Sci U S A ; 115(5): E856-E865, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339490

RESUMEN

Membrane contact sites (MCSs) in eukaryotic cells are hotspots for lipid exchange, which is essential for many biological functions, including regulation of membrane properties and protein trafficking. Lipid transfer proteins anchored at membrane contact sites (LAMs) contain sterol-specific lipid transfer domains [StARkin domain (SD)] and multiple targeting modules to specific membrane organelles. Elucidating the structural mechanisms of targeting and ligand recognition by LAMs is important for understanding the interorganelle communication and exchange at MCSs. Here, we determined the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like domain and the SDs of Lam2 and Lam4 in the apo form and in complex with ergosterol. The Lam6 PH-like domain displays a unique PH domain fold with a conserved N-terminal α-helix. The Lam6 PH-like domain lacks the basic surface for phosphoinositide binding, but contains hydrophobic patches on its surface, which are critical for targeting to endoplasmic reticulum (ER)-mitochondrial contacts. Structures of the LAM SDs display a helix-grip fold with a hydrophobic cavity and a flexible Ω1-loop as a lid. Ergosterol is bound to the pocket in a head-down orientation, with its hydrophobic acyl group located in the tunnel entrance. The Ω1-loop in an open conformation is essential for ergosterol binding by direct hydrophobic interaction. Structural comparison suggested that the sterol binding mode of the Lam2 SD2 is likely conserved among the sterol transfer proteins of the StARkin superfamily. Structural models of full-length Lam2 correlated with the sterol transport function at the membrane contact sites.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Esteroles/química , Animales , Sitios de Unión , Transporte Biológico , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Ergosterol/química , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Lípidos/química , Liposomas/química , Ratones , Mitocondrias , Membranas Mitocondriales/metabolismo , Dominios Homólogos a Pleckstrina , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Levaduras/metabolismo
8.
Structure ; 25(4): 617-629.e3, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28319008

RESUMEN

Yeast Osh1 belongs to the oxysterol-binding protein (OSBP) family of proteins and contains multiple targeting modules optimized for lipid transport at the nucleus-vacuole junction (NVJ). The key determinants for NVJ targeting and the role of Osh1 at NVJs have remained elusive because of unknown lipid specificities. In this study, we determined the structures of the ankyrin repeat domain (ANK), and OSBP-related domain (ORD) of Osh1, in complex with Nvj1 and ergosterol, respectively. The Osh1 ANK forms a unique bi-lobed structure that recognizes a cytosolic helical segment of Nvj1. We discovered that Osh1 ORD binds ergosterol and phosphatidylinositol 4-phosphate PI(4)P in a competitive manner, suggesting counter-transport function of the two lipids. Ergosterol is bound to the hydrophobic pocket in a head-down orientation, and the structure of the PI(4)P-binding site in Osh1 is well conserved. Our results suggest that Osh1 performs non-vesicular transport of ergosterol and PI(4)P at the NVJ.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Levaduras/metabolismo , Sitios de Unión , Núcleo Celular/metabolismo , Ergosterol/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Vacuolas/metabolismo
9.
Biochim Biophys Acta ; 1861(8 Pt B): 928-939, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26784528

RESUMEN

Sterols such as cholesterol in mammals and ergosterol in fungi are essential membrane components and play a key role in membrane function and in cell signaling. The intracellular distribution and processing of sterols and other phospholipids are in part carried out by oxysterol binding protein-related proteins (ORPs) in eukaryotes. Seven ORPs (Osh1-Osh7 proteins) in yeast have distinct functions in maintaining distribution, metabolism and signaling of intracellular lipids but they share at least one essential function. Significant progress has been made in understanding the ligand specificity and mechanism of non-vesicular lipid transport by ORPs. The unique structural features of Osh proteins explain the diversity and specificity of functions in PI(4)P-coupled lipid transport optimized in membrane contact sites. This review discusses the current advances in structural biology regarding this protein family and its potential functions, introducing them as the key players in the novel pathways of phosphoinositide-coupled directional transport of various lipids. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Receptores de Esteroides/química , Receptores de Esteroides/fisiología , Animales , Transporte Biológico/genética , Humanos , Metabolismo de los Lípidos/genética , Modelos Moleculares , Familia de Multigenes , Dominios y Motivos de Interacción de Proteínas/fisiología , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
10.
Nat Commun ; 6: 6129, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25655993

RESUMEN

Transcriptional regulation of ergosterol biosynthesis in fungi is crucial for sterol homeostasis and for resistance to azole drugs. In Saccharomyces cerevisiae, the Upc2 transcription factor activates the expression of related genes in response to sterol depletion by poorly understood mechanisms. We have determined the structure of the C-terminal domain (CTD) of Upc2, which displays a novel α-helical fold with a deep hydrophobic pocket. We discovered that the conserved CTD is a ligand-binding domain and senses the ergosterol level in the cell. Ergosterol binding represses its transcription activity, while dissociation of the ligand leads to relocalization of Upc2 from cytosol to nucleus for transcriptional activation. The C-terminal activation loop is essential for ligand binding and for transcriptional regulation. Our findings highlight that Upc2 represents a novel class of fungal zinc cluster transcription factors, which can serve as a target for the developments of antifungal therapeutics.


Asunto(s)
Ergosterol/química , Ergosterol/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Antifúngicos/farmacología , Sitios de Unión , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Cristalografía por Rayos X , Citosol/efectos de los fármacos , Citosol/metabolismo , Farmacorresistencia Microbiana/efectos de los fármacos , Ergosterol/análogos & derivados , Ergosterol/farmacología , Fluconazol/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Ligandos , Espectrometría de Masas , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Estándares de Referencia , Saccharomyces cerevisiae/efectos de los fármacos , Espectrometría de Fluorescencia , Dedos de Zinc
11.
Biochem Biophys Res Commun ; 452(1): 130-5, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25152391

RESUMEN

Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank-Homer complexes by protein-protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein-protein interaction module for the synaptic protein clustering.


Asunto(s)
Guanilato-Quinasas/química , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Animales , Calorimetría , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Ratas , Homología de Secuencia de Aminoácido
12.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 7): 949-54, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25005096

RESUMEN

Guanylate kinase-associated protein (GKAP) is a scaffolding protein that plays a role in protein-protein interactions at the synaptic junction such as linking the NMDA receptor-PSD-95 complex to the Shank-Homer complex. In this study, the C-terminal helical domain of GKAP from Rattus norvegicus was purified and crystallized by the vapour-diffusion method. To improve the diffraction quality of the GKAP crystals, a flexible loop in GKAP was truncated and an MBP (maltose-binding protein)-GKAP fusion was constructed in which the last C-terminal helix of MBP is fused to the N-terminus of the GKAP domain. The MBP-GKAP crystals diffracted to 2.0 Šresolution using synchrotron radiation. The crystal was orthorhombic, belonging to space group P21212, with unit-cell parameters a=99.1, b=158.7, c=65.5 Å. The Matthews coefficient was determined to be 2.44 Å3 Da(-1) (solvent content 49.5%) with two molecules in the asymmetric unit. Initial attempts to solve the structure by molecular replacement using the MBP structure were successful.


Asunto(s)
Proteínas de Unión a Maltosa/química , Proteínas del Tejido Nervioso/química , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Asociadas a SAP90-PSD95 , Alineación de Secuencia
13.
Structure ; 21(7): 1203-13, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23791945

RESUMEN

The oxysterol-binding protein (OSBP)-related proteins (ORPs) are conserved from yeast to humans, and implicated in the regulation of lipid homeostasis and in signaling pathways. Saccharomyces cerevisiae has seven ORPs (Osh1-Osh7) that share one unknown essential function. Here, we report the 1.5-2.3 Å structures of the PH domain and ORD (OSBP-related domain) of yeast Osh3 in apo-form or in complex with phosphatidylinositol 4-phosphate (PI[4]P). Osh3 recognizes PI(4)P by the highly conserved residues in the tunnel of ORD whereas it lacks sterol binding due to the narrow hydrophobic tunnel. Yeast complementation tests suggest that PI(4)P binding to PH and ORD is essential for function. This study suggests that the unifying feature in all ORP homologs is the binding of PI(4)P to ORD and sterol binding is additional to certain homologs. Structural modeling of full-length Osh3 is consistent with the concept that Osh3 is a lipid transfer protein or regulator in membrane contact sites.


Asunto(s)
Proteínas Portadoras/química , Fosfatos de Fosfatidilinositol/química , Proteínas de Saccharomyces cerevisiae/química , Secuencias de Aminoácidos , Apoproteínas/química , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Muramidasa/química , Fragmentos de Péptidos/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Saccharomyces cerevisiae , Solubilidad , Proteínas Virales/química
14.
FEBS Lett ; 587(11): 1610-6, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23603387

RESUMEN

Sec14 family homologs are the major yeast phosphatidylinositol/phosphatidylcholine transfer proteins regulating lipid metabolism and vesicle trafficking. The structure of Saccharomyces cerevisiae Sfh3 displays a conserved Sec14 scaffold and reveals determinants for the specific recognition of phosphatidylinositol ligand. Apo-Sfh3 forms a dimer through the hydrophobic interaction of gating helices. Binding of phosphatidylinositol leads to dissociation of the dimer into monomers in a reversible manner. This study suggests that the substrate induced dimer-monomer transformation is an essential part of lipid transfer cycles by Sfh3.


Asunto(s)
Fosfatidilinositoles/química , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae , Secuencia de Aminoácidos , Cristalografía por Rayos X , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Especificidad por Sustrato
15.
Artículo en Inglés | MEDLINE | ID: mdl-23385756

RESUMEN

Upc2, a zinc-cluster transcription factor, is a regulator of ergosterol biosynthesis in yeast. In response to sterol levels, the transcriptional activity of Upc2 is controlled by the C-terminal domain. In this study, the C-terminal regulatory domain of Upc2 from Saccharomyces cerevisiae was purified and crystallized by the vapour-diffusion method. To improve the diffraction quality of Upc2 crystals, a Upc2 fusion protein in which 11 residues of the variable loop (residues 715-725) were replaced by T4 lysozymes in Upc2 (Upc2-T4L) was engineered. The Upc2-T4L crystals diffracted to 2.9 Å resolution using synchrotron radiation. The crystal was trigonal, belonging to space group P3(2) with unit-cell parameters a = 67.2, b = 67.2, c = 257.5 Å. The Matthews coefficient was determined to be 3.41 Å(3) Da(-1) with two molecules in the asymmetric unit. Initial attempts to solve the structure by the single-anomalous dispersion technique using selenomethionine were successful.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo , Transactivadores/química , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Factores de Transcripción/química
16.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 12): 1498-502, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23192032

RESUMEN

Oxysterol-binding protein (OSBP) related proteins (ORPs) are conserved from yeast to humans and are implicated in regulation of sterol homeostasis and in signal transduction pathways. Osh3 of Saccharomyces cerevisiae is a pleckstrin-homology (PH) domain-containing ORP member that regulates phosphoinositide metabolism at endoplasmic reticulum-plasma membrane contact sites. The N-terminal PH domain of Osh3 was purified and crystallized as a lysozyme fusion and the resulting crystal diffracted to 2.3 Šresolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a=98.03, b=91.31, c=84.13 Å, ß=81.41°. With two molecules in the asymmetric unit, the Matthews coefficient was 3.13 Å3 Da(-1). Initial attempts to solve the structure by molecular-replacement techniques using T4 lysozyme as a search model were successful. The C-terminal OSBP-related domain (OBD) of Osh3 was crystallized by the vapour-diffusion method and the resulting crystal diffracted to 1.5 Šresolution. The crystal was orthorhombic, belonging to space group P2(1)2(1)2(1), with unit-cell parameters a=41.57, b=87.52, c=100.58 Å. With one molecule in the asymmetric unit, the Matthews coefficient was 2.01 Å3 Da(-1). Initial attempts to solve the structure by the single-wavelength anomalous dispersion technique using bromine were successful.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Proteínas Portadoras/metabolismo , Cristalización , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...