Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2179, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069158

RESUMEN

A full understanding of the inactivated COVID-19 vaccine-mediated antibody responses to SARS-CoV-2 circulating variants will inform vaccine effectiveness and vaccination development strategies. Here, we offer insights into the inactivated vaccine-induced antibody responses after prime-boost vaccination at both the polyclonal and monoclonal levels. We characterized the VDJ sequence of 118 monoclonal antibodies (mAbs) and found that 20 neutralizing mAbs showed varied potency and breadth against a range of variants including XBB.1.5, BQ.1.1, and BN.1. Bispecific antibodies (bsAbs) based on nonoverlapping mAbs exhibited enhanced neutralizing potency and breadth against the most antibody-evasive strains, such as XBB.1.5, BQ.1.1, and BN.1. The passive transfer of mAbs or their bsAb effectively protected female hACE2 transgenic mice from challenge with an infectious Delta or Omicron BA.2 variant. The neutralization mechanisms of these antibodies were determined by structural characterization. Overall, a broad spectrum of potent and distinct neutralizing antibodies can be induced in individuals immunized with the SARS-CoV-2 inactivated vaccine BBIBP-CorV, suggesting the application potential of inactivated vaccines and these antibodies for preventing infection by SARS-CoV-2 circulating variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Femenino , Animales , Ratones , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Ratones Transgénicos , Vacunas de Productos Inactivados , Anticuerpos Antivirales
2.
mBio ; 13(4): e0148522, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35862773

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the global pandemic and life-threatening coronavirus disease 2019 (COVID-19). Although vaccines and therapeutic antibodies are available, their efficacy is continuously undermined by rapidly emerging SARS-CoV-2 variants. Here, we found that all-trans retinoic acid (ATRA), a vitamin A (retinol) derivative, showed potent antiviral activity against all SARS-CoV-2 variants in both human cell lines and human organoids of the lower respiratory tract. Mechanistically, ATRA directly binds in a deep hydrophobic pocket of the receptor binding domain (RBD) located on the top of the SARS-CoV-2 spike protein (S) trimer. The bound ATRA mediates strong interactions between the "down" RBDs and locks most of the S trimers in an RBD "all-down" and ACE2-inaccessible inhibitory conformation. In summary, our results reveal the pharmacological biotargets and structural mechanism of ATRA and other retinoids in SARS-CoV-2 infection and suggest that ATRA and its derivatives could be potential hit compounds against a broad spectrum of coronaviruses. IMPORTANCE Retinoids, a group of compounds including vitamin A and its active metabolite all-trans retinoic acid (ATRA), regulate serial physiological activity in multiple organ systems, such as cell growth, differentiation, and apoptosis. The ATRA analogues reported to date include more than 4,000 natural and synthetic molecules that are structurally and/or functionally related to ATRA. Here, we found that ATRA showed potent antiviral activity against all SARS-CoV-2 variants by directly binding in a deep hydrophobic pocket of the receptor binding domain (RBD) located on top of the SARS-CoV-2 spike protein (S) trimer. The bound ATRA mediates strong interactions between the "down" RBDs and locks most of the S trimers in an RBD "all-down" and ACE2-inaccessible inhibitory conformation, suggesting the pharmacological feasibility of using ATRA or its derivatives as a remedy for and prevention of COVID-19 disease.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Antivirales/farmacología , Humanos , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología , Vitamina A/metabolismo , Vitamina A/farmacología
3.
Cell ; 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35777355

RESUMEN

The host-seeking activity of hematophagous arthropods is essential for arboviral transmission. Here, we demonstrate that mosquito-transmitted flaviviruses can manipulate host skin microbiota to produce a scent that attracts mosquitoes. We observed that Aedes mosquitoes preferred to seek and feed on mice infected by dengue and Zika viruses. Acetophenone, a volatile compound that is predominantly produced by the skin microbiota, was enriched in the volatiles from the infected hosts to potently stimulate mosquito olfaction for attractiveness. Of note, acetophenone emission was higher in dengue patients than in healthy people. Mechanistically, flaviviruses infection suppressed the expression of RELMα, an essential antimicrobial protein on host skin, thereby leading to the expansion of acetophenone-producing commensal bacteria and, consequently, a high acetophenone level. Given that RELMα can be specifically induced by a vitamin A derivative, the dietary administration of isotretinoin to flavivirus-infected animals interrupted flavivirus life cycle by reducing mosquito host-seeking activity, thus providing a strategy of arboviral control.

4.
PLoS Pathog ; 18(6): e1010552, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35679229

RESUMEN

Arboviruses are etiological agents of various severe human diseases that place a tremendous burden on global public health and the economy; compounding this issue is the fact that effective prophylactics and therapeutics are lacking for most arboviruses. Herein, we identified 2 bacterial lipases secreted by a Chromobacterium bacterium isolated from Aedes aegypti midgut, Chromobacterium antiviral effector-1 (CbAE-1) and CbAE-2, with broad-spectrum virucidal activity against mosquito-borne viruses, such as dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV) and Sindbis virus (SINV). The CbAEs potently blocked viral infection in the extracellular milieu through their lipase activity. Mechanistic studies showed that this lipase activity directly disrupted the viral envelope structure, thus inactivating infectivity. A mutation in the lipase motif of CbAE-1 fully abrogated the virucidal ability. Furthermore, CbAEs also exert lipase-dependent entomopathogenic activity in mosquitoes. The anti-arboviral and entomopathogenic properties of CbAEs render them potential candidates for the development of novel transmission control strategies against vector-borne diseases.


Asunto(s)
Aedes , Arbovirus , Virus del Dengue , Infección por el Virus Zika , Virus Zika , Animales , Arbovirus/genética , Humanos , Lipasa , Mosquitos Vectores
5.
Nat Metab ; 4(5): 547-558, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35534727

RESUMEN

The severity and mortality of COVID-19 are associated with pre-existing medical comorbidities such as diabetes mellitus. However, the underlying causes for increased susceptibility to viral infection in patients with diabetes is not fully understood. Here we identify several small-molecule metabolites from human blood with effective antiviral activity against SARS-CoV-2, one of which, 1,5-anhydro-D-glucitol (1,5-AG), is associated with diabetes mellitus. The serum 1,5-AG level is significantly lower in patients with diabetes. In vitro, the level of SARS-CoV-2 replication is higher in the presence of serum from patients with diabetes than from healthy individuals and this is counteracted by supplementation of 1,5-AG to the serum from patients. Diabetic (db/db) mice undergo SARS-CoV-2 infection accompanied by much higher viral loads and more severe respiratory tissue damage when compared to wild-type mice. Sustained supplementation of 1,5-AG in diabetic mice reduces SARS-CoV-2 loads and disease severity to similar levels in nondiabetic mice. Mechanistically, 1,5-AG directly binds the S2 subunit of the SARS-CoV-2 spike protein, thereby interrupting spike-mediated virus-host membrane fusion. Our results reveal a mechanism that contributes to COVID-19 pathogenesis in the diabetic population and suggest that 1,5-AG supplementation may be beneficial to diabetic patients against severe COVID-19.


Asunto(s)
COVID-19 , Diabetes Mellitus Experimental , Animales , Glucosa , Humanos , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
6.
Life Med ; 1(2): 64-66, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36820103
7.
Nat Microbiol ; 4(12): 2405-2415, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31527795

RESUMEN

A blood meal is the primary route through which mosquitoes acquire an arbovirus infection. Blood components or their metabolites may regulate the susceptibility of mosquitoes to arboviruses. Here we report that serum iron in human blood influences dengue virus acquisition by mosquitoes. Dengue virus acquisition by Aedes aegypti was inversely correlated with the iron concentration in serum from human donors. In a mouse-mosquito acquisition model, iron supplementation reduced dengue virus prevalence and viral load, whereas neutralization of serum iron facilitated dengue virus infection in A. aegypti mosquitoes. Of note, mosquitoes feeding on iron-deficient (sideropenic) mice exhibited a higher prevalence of dengue virus. Reversal of the sideropenic status of hosts largely reduced dengue virus acquisition and infection by mosquitoes. Serum iron, rather than haem-bound iron, was utilized by the mosquito iron metabolism pathway to boost the activity of reactive oxygen species in the gut epithelium, subsequently inhibiting infection by dengue virus. On the basis of these results, a status of iron deficiency in the human population might contribute to the vectorial permissiveness to dengue virus, thereby facilitating its spread by mosquitoes.


Asunto(s)
Aedes/virología , Virus del Dengue/efectos de los fármacos , Dengue/virología , Hierro/sangre , Hierro/farmacología , Mosquitos Vectores/virología , Anemia Ferropénica , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Tracto Gastrointestinal/virología , Humanos , Hierro/metabolismo , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno , Células Vero
8.
Nat Commun ; 10(1): 1324, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902991

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus that predominantly circulates between humans and Aedes mosquitoes. Clinical studies have shown that Zika viruria in patients persists for an extended period, and results in infectious virions being excreted. Here, we demonstrate that Aedes mosquitoes are permissive to ZIKV infection when breeding in urine or sewage containing low concentrations of ZIKV. Mosquito larvae and pupae, including from field Aedes aegypti can acquire ZIKV from contaminated aquatic systems, resulting in ZIKV infection of adult females. Adult mosquitoes can transmit infectious virions to susceptible type I/II interferon receptor-deficient (ifnagr-/-) C57BL/6 (AG6) mice. Furthermore, ZIKV viruria from infected AG6 mice can causes mosquito infection during the aquatic life stages. Our studies suggest that infectious urine could be a natural ZIKV source, which is potentially transmissible to mosquitoes when breeding in an aquatic environment.


Asunto(s)
Aedes/virología , Cruzamiento , Contaminación del Agua , Infección por el Virus Zika/parasitología , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Animales , Humanos , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Aguas del Alcantarillado/virología , Virión/metabolismo , Infección por el Virus Zika/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...