RESUMEN
Though the relationships between the microorganism communities and the edaphic factors in rhizosphere soil along the plantation chronosequence have been widely reported, few researches have appeared on the interrelationship about rhizospheric soil microorganism community and soil organic carbon (SOC) under multi-root Cerasus humilis plantations of different age. In our study, the rhizospheric soil microbial communities, soil physicochemistry, and SOC molecular groups in plantations of 1-, 3-, and 5-year-old Cerasus humilis were investigated in karst rocky desertification control area of southwest China. It was found that karst rhizospheric soil moisture, total nitrogen, available potassium, and 46-60 ppm N-alkyl/methoxyl C decreased; however, SOC and fungal:bacterial ratio decreased along multi-root Cerasus humilis plantation chronosequence. Proteobacteria, Actinobacteriota, Acidobacteriota, and Ascomycota were recognized as the top 4 phyla in the karst rhizospheric soil microbial co-occurrence network. Moreover, Cerasus humilis plantations exerted significantly direct effect on rhizospheric soil microbial communities and soil physicochemical properties exerted significantly direct effects on SOC molecular groups. Our results suggested that the increased Cerasus humilis plantation years will promote C sequestration (e.g., SOC) with the continued input of root litter, root exudates, and plant litter. The inputted and activated C can be preferentially consumed by rhizospheric soil microorganisms and converted into microbial-derived compounds, which are finally incorporated into recalcitrant SOC pools. Hence, Cerasus humilis redistributed SOC molecular groups via rhizospheric soil microorganisms, and increased ratio of fungi:bacteria in rhizosphere was associated with C sequestration which could not be regarded as a widespread rule. Though our study is the first attempt to recognize the interaction between rhizospheric soil microbial community and SOC molecular groups at the karst rocky desertification control area, it provides a baseline for further research that ecological restoration can promote soil C sequestration via soil microorganisms in the early period of eco-restoration at karst area.
Asunto(s)
Microbiota , Suelo , Suelo/química , Carbono/análisis , Conservación de los Recursos Naturales , Bacterias , China , Microbiología del SueloRESUMEN
Studying the characteristics of microorganisms in mine reclamation sites can provide a scientific reference basis for mine land reclamation. Soils in the plough layer (0-20 cm) of the bauxite mine plots in Pingguo city, Guangxi Zhuang Autonomous Region, China, with different reclamation years were used as the research objects. The community structure of soil bacteria was analyzed with high-throughput sequencing technology. The results show the following: (1) Reclamation significantly increased the contents of soil nutrients (p < 0.05). (2) The relative abundances of Proteobacteria were high (22.90~41.56%) in all plots, and reclamation significantly reduced the relative abundances of Firmicutes (3.42-10.77%) compared to that in the control plot (24.74%) (p < 0.05). The relative abundances of α-proteobacteria generally increased while the reclamation year increased. The relative abundances of α-proteobacteria and γ-proteobacteria showed significant positive correlations with soil carbon, nitrogen, and phosphorus nutrients (p < 0.01). The relative abundance of Acidobacteria Group 6 showed significant positive correlations with soil exchangeable Ca and Mg (p < 0.01). (3) Bacterial co-occurrence network showed more Copresence interactions in all plots (50.81-58.39%). The reclaimed plots had more nodes, higher modularity, and longer characteristic path length than the control plot, and the keystone taxa changed in different plots. (4) The chemoheterotrophy and aerobic chemoheterotrophy were the most abundant functional groups in all plots (35.66-48.26%), while reclamation reduced the relative abundance of fermentation groups (1.75-11.21%). The above findings indicated that reclamation improved soil nutrients, changed the bacterial community structure and potential functions, and accelerated the microbial stabilization of the reclaimed soil.