Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Anaerobe ; 82: 102756, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37429411

RESUMEN

OBJECTIVES: This retrospective study analyzed the susceptibility levels of Bacteroides fragilis group (BFG) in a hospital-based laboratory where disk diffusion test (DDT) was routinely performed. Isolates non-susceptible to imipenem and metronidazole by DDT were further investigated using a gradient method. METHODS: The DDT and MIC susceptibility data of clindamycin, metronidazole, moxifloxacin and imipenem obtained on Brucella blood agar for 1264 non-duplicated isolates during 2020-2021 were analyzed. Species identification was obtained by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and 16S rRNA sequencing. Interpretative agreement of DDT results using the 2015 EUCAST tentative and 2021 CA-SFM breakpoints was compared against MIC as the reference. RESULTS: The dataset included 604 B. fragilis (483 division I, 121 division II isolates), 415 non-fragilis Bacteroides, 177 Phocaeicola and 68 Parabacteroides. Susceptibility rates for clindamycin (22.1-62.1%) and moxifloxacin (59.9-80.9%) were low and many had no inhibition zones. At the EUCAST and CA-SFM breakpoints, 83.0 and 89.4% were imipenem-susceptible, and 89.6% and 97.4 were metronidazole-susceptible. MIC testing confirmed 11.4% and 2.8% isolates as imipenem-non-susceptible and metronidazole-resistant, respectively. Significant numbers of false-susceptibility and/or false-resistance results were observed at the CA-SFM breakpoint but not the EUCAST breakpoint. Higher rates of imipenem and/or metronidazole resistance were detected in B. fragilis division II, B. caccae, B. ovatus, B. salyersiae, B. stercoris and Parabacteroides. Co-resistance to imipenem and metronidazole was detected in 3 B. fragilis division II isolates. CONCLUSIONS: The data demonstrated emerging BFG resistance to several important anti-anaerobic antibiotics and highlights the importance of anaerobic susceptibility testing in clinical laboratories to guide therapy.


Asunto(s)
Bacteroides fragilis , Bacteroides , Clindamicina , Metronidazol , Moxifloxacino , Hong Kong , Estudios Retrospectivos , ARN Ribosómico 16S/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Imipenem/farmacología
2.
mSystems ; 7(6): e0077522, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36218363

RESUMEN

The prevalence and propagation of antimicrobial resistance (AMR) are serious global public health concerns. The large and the ever-increasing use of antibiotics in livestock is also considered a great concern. The extent of the similarity of acquired antibiotic resistance genes (ARGs) between humans and food animals and the driving factors underlying AMR transfer between them are not clear, although a link between ARGs in both hosts was proposed. To address this question, with swine and chicken as examples of food animals, we analyzed over 1,000 gut metagenomes of humans and food animals from over the world. A relatively high abundance and diversity of ARGs were observed in swine compared with those in humans as a whole. Commensal bacteria, particularly species from Clostridiales, contribute the most ARGs associated with mobile genetic elements (MGEs) and were found in both humans and food animals. Further studies demonstrate that overrepresented MGEs, namely, Tn4451/Tn4453 and TnAs3, are attributed mainly to the sharing between humans and food animals. A member of large resolvase family site-specific recombinases, TnpX, is found in Tn4451/Tn4453 which facilitates the insertions of the transient circular molecule. Although the variance in the transferability of ARGs in humans is higher than that in swine, a higher average transferability was observed in swine than that in humans. In conclusion, the potential antibiotic resistance hot spots with higher transferability in food animals observed in the present study emphasize the importance of surveillance for emerging resistance threats before they spread. IMPORTANCE Antimicrobial resistance (AMR) has proven to be a global public health concern. To conquer this increasingly worrying trend, an overarching, One Health approach has been used that brings together different sectors, but the fundamental knowledge of the relationship between humans, food animals, and their environments is not mature yet or is lacking in some aspect. With swine and chicken as examples of food animals, a large global data set of over 1,000 human and food animal gut metagenomes was analyzed with a focus on acquired antibiotic resistance genes (ARGs) associated with mobile genetic elements (MGEs) to answer this question. Outputs from this work open a new avenue to further our understanding of ARG transferability in food animals. It is a necessary milestone to better equip governmental agencies to monitor and pre-empt antibiotic resistance hot spots. This work will assist and give guidance on how to decipher other links within any One Health initiatives with expected positive feedback to human health.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Animales , Porcinos/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Bacterias/genética , Genes Bacterianos , Metagenoma
3.
Int J Med Microbiol ; 312(6): 151559, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35961233

RESUMEN

INTRODUCTION: The emergence of multidrug resistance in Bacteroides fragilis, especially the phylogenetic lineage carrying the carbapenemase gene cfiA, represents an increasing threat to human health. However, knowledge on the diversity of the multidrug-resistant strains and the genetic elements carrying the antibiotic resistance genes (ARGs) remains limited. AIM: The objective of the study was to describe the resistome in cfiA-positive B. fragilis. METHODS: A collection of cfiA-positive B. fragilis from diverse human (8 bacteremias, 15 wound infections) and animal (2 chickens, 2 pigs, 6 dogs, 3 cats) sources in Hong Kong, 2015-2017 was analysed by whole genome sequencing. RESULTS: In the 36 isolates, 13 distinct ARGs (total number 83, median 2, range 0-7 per isolate) other than cfiA were detected. ARGs encoding resistance to aminoglycosides, ß-lactams, macrolides, sulphonamides and tetracyclines were carried by CTn341-like, CTnHyb-like, Tn5220-like, Tn4555-like and Tn613-like transposons and were detected in phylogenetically diverse isolates of different host sources. Only few ARGs encoding resistance to metronidazole and tetracyclines were localized on plasmids. In two chicken isolates, a novel transposon (designated as Tn6994) was found to be involved in the dissemination of multiple ARGs mediating resistance to multiple antibiotics, including metronidazole and linezolid that are critically important for treatment of anaerobic infections. In mating experiments, Tn6994 and the associated phenotypic resistance could be transferred to Bacteroides nordii recipient. CONCLUSION: This study illustrates the importance of transposons in the dissemination of ARGs in the cfiA-positive division of B. fragilis. One Health approach is necessary to track the dissemination of ARGs.


Asunto(s)
Infecciones Bacterianas , Infecciones por Bacteroides , Aminoglicósidos , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Bacteroides fragilis/genética , Pollos , Perros , Farmacorresistencia Microbiana , Humanos , Linezolid , Macrólidos , Metronidazol , Pruebas de Sensibilidad Microbiana , Filogenia , Sulfonamidas , Porcinos , Tetraciclinas , Secuenciación Completa del Genoma , beta-Lactamasas/genética , beta-Lactamas
4.
Anaerobe ; 75: 102567, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35427784

RESUMEN

OBJECTIVES: To compare the phylogeny of cfiA-positive Bacteroides fragilis isolates from diverse human and animal sources. METHOD: Complete genome sequences were obtained from 42 cfiA-positive B. fragilis isolates (Hong Kong, 2015-2017) and additional 24 genomes deposited in the GenBank (multiple countries, 1985-2019) were included. The genomic clusters were constructed using PopPUNK. The CfiA alleles and polymorphism in the cfiA locus were analyzed in silico. RESULTS: The 66 isolates were grouped into 12 genomic clusters (BFSC-1 to 12). Human infection isolates were distributed in diverse clusters, being many of them common to fecal isolates from both human and animals. Thirteen CfiA alleles including 2 novel ones were identified. CfiA-1 (n = 28) is the predominating allele, following by CfiA-13 (n = 8), CfiA-4 (n = 7) and CfiA-14 (n = 6). The other CfiA alleles were identified in 1-3 isolates. Six patterns of gene context were identified in the regions flanking cfiA locus. No consistent association between genomic clusters and CfiA alleles could be detected. Similarly, markedly elevated imipenem MIC was linked to the integration, immediately upstram of cfiA of an IS element but not the CfiA allele or gene context. CONCLUSION: The phylogeny of cfiA-positive B. fragilis isolates causing human diseases was diverse and overlaped with those from human and animal carriage.


Asunto(s)
Infecciones Bacterianas , Infecciones por Bacteroides , Alelos , Animales , Antibacterianos , Proteínas Bacterianas/genética , Bacteroides fragilis/genética , Genómica , Humanos , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
6.
Front Microbiol ; 12: 704552, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421864

RESUMEN

Oxacillin resistance mediated by mecA in Staphylococcus lugdunensis is emerging in some geographic areas. We evaluated cefoxitin disk diffusion (DD) and a new oxacillin agar (supplemented with 2 µg/ml oxacillin and 2% sodium chloride) screen for the detection of mecA-mediated resistance in S. lugdunensis. A total of 300 consecutive, non-duplicated clinical S. lugdunensis isolates from diverse sources in Hong Kong in 2019 were tested. The categorical agreement and errors obtained between cefoxitin DD test, oxacillin agar screen and mecA PCR were analyzed. Isolates with discordant results were further tested by MIC, penicillin binding protein 2a (PBP2a) assays, population analysis and molecular typing. PCR showed that 62 isolates were mecA-positive and 238 isolates were mecA-negative. For cefoxitin DD results interpreted using S. aureus/S. lugdunensis breakpoints, the categorical agreement (CA) for two brands of Muller-Hinton agars, MH-II (Becton Dickinson) and MH-E (bioMérieux) were both 96.0%; MEs were both 0%; and VMEs were 19.4 and 12.9%, respectively. The new oxacillin agar reliably differentiated mecA-positive and mecA-negative isolates (100% CA) without any ME or VME results. The 8 isolates with false susceptibility in the cefoxitin DD testing had cefoxitin and oxacillin MICs in the susceptible range. The isolates showed heterogeneous oxacillin resistance with resistant subpopulations at low frequencies. All had positive PBP2a results and were typed as sequence type 27/SCCmec V. The findings highlight the inability of cefoxitin DD and MIC tests for reliable detection of some mecA-positive S. lugdunensis isolates.

7.
J Glob Antimicrob Resist ; 20: 260-265, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31493529

RESUMEN

OBJECTIVES: This study evaluated disc diffusion tests and agar screening for detecting mecA-mediated oxacillin resistance in Staphylococcus lugdunensis (S. lugdunensis). METHODS: Staphylococcus lugdunensis isolates (n = 179) from diverse sources in Hong Kong during 1998-2018 were investigated by disc diffusion tests (cefoxitin and oxacillin) and inoculation onto oxacillin (1 µg/mL and 2 µg/mL) and chromID methicillin-resistant Staphylococcus aureus (MRSA) agars. The results were compared with mecA PCR as the reference. Isolates with discordant results were further tested by MIC and penicillin-binding protein 2a (PBP2a) assays. RESULTS: Cefoxitin and oxacillin zone diameters were not distributed in ways that allowed reliable division of the mecA-positive (n = 52) and mecA-negative (n = 127) isolates. On applying the 2019 Clinical Laboratory Standards Institute (CLSI) M100 breakpoints for cefoxitin disc results, there was 88% categorical agreement (CA) and 40% very major error (VME). Screening using 2 µg/mL oxacillin agar reliably differentiated mecA-positive and mecA-negative isolates (100% CA) without any major error (ME) or VME results. The performance of screening using 1 µg/mL oxacillin agar or ChromID MRSA agar was variable (74-89% CA, 0-38% ME and 0-37% VME). The mecA-positive isolates (n = 21) that could not be detected by the cefoxitin disc test were further characterised. The cefoxitin MIC for all 21 isolates was ≤4 µg/mL. Twenty isolates had an oxacillin MIC of 1-2 µg/mL and one had an oxacillin MIC of 4 µg/mL. All had positive PBP2a results and were typed as clonal cluster 27/SCCmec V. CONCLUSIONS: These findings highlight the need to evaluate phenotypic methods using mecA-positive S. lugdunensis with different oxacillin resistance phenotypes.


Asunto(s)
Proteínas Bacterianas/genética , Cefoxitina/farmacología , Resistencia a la Meticilina , Infecciones Estafilocócicas/microbiología , Staphylococcus lugdunensis/clasificación , Agar , Carga Bacteriana , Portador Sano/microbiología , Cefoxitina/uso terapéutico , Pruebas Antimicrobianas de Difusión por Disco , Humanos , Pruebas de Sensibilidad Microbiana , Oxacilina/farmacología , Fenotipo , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus lugdunensis/efectos de los fármacos , Staphylococcus lugdunensis/crecimiento & desarrollo
8.
Access Microbiol ; 1(10): e000072, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32975531

RESUMEN

[This corrects the article DOI: 10.1099/acmi.ac2019.po0040.].

9.
Front Microbiol ; 9: 2272, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30294321

RESUMEN

The emergence of New Delhi metallo-ß-lactamase (NDM) in common enterobacterial species is a major concern for healthcare. Early reports have revealed that the spread of NDM involved diverse and heterogeneous plasmids. Recently, the involvement of a rare, IncX3 subtype plasmid has been increasingly recognized. Here, we studied the prevalence of IncX plasmid subtypes in 198 carbapenem-resistant Enterobacteriaceae, originating from a territory-wide active surveillance in Hong Kong in 2016. The complete sequences and biological features of the bla NDM-carrying plasmids were investigated. A total of 62 NDM-type, 21 OXA-48 type, 14 IMP-type, 8 KPC-type, 4 IMI-type producers, and 89 non-carbapenemase-producers were tested for presence of IncX subtypes. IncX3 (n = 60) was the most common subtype, followed by IncX4 (n = 6) and IncX1 (n = 2). The prevalence of IncX3 subtype in isolates producing NDM, other carbapenemase types and non-carbapenemase producers were 75.8, 21.3, and 3.4%, respectively (P < 0.001). An IncX3 plasmid (size ∼50 kb) was confirmed to carry bla NDM in 47 isolates of different enterobacterial species. Thirteen IncX3 plasmids originating from six healthcare regions in Hong Kong were completely sequenced. The results showed that the IncX3 plasmids carrying bla NDM share a high degree of sequence identity with a previously reported plasmid, pNDM-HN380 (GenBank accession JX104760), over the backbone and genetic load regions. A blast search further revealed the occurrence of identical or nearly identical IncX3 plasmids carrying bla NDM in other part of China, Korea, Myanmar, India, Oman, Kuwait, Italy, and Canada. Two IncX3 carrying bla NDM were investigated further. Conjugation experiments demonstrated that the IncX3 plasmids could be efficiently transferred to multiple enterobacterial species at frequencies that are comparable or higher than the epidemic IncFII plasmid carrying bla CTX-M (pHK01). In addition, efficient transfer of the NDM plasmids occurred over a range of temperatures. In conclusion, this study demonstrated the important role played by IncX3 in the dissemination of NDM and the occurrence of pNDM-HN380-like plasmids in geographically widespread areas. The high mobility of IncX3 plasmid across different enterobacterial species highlights the ability of this plasmid replicon to be an important vehicle in worldwide dissemination of NDM.

10.
J Clin Microbiol ; 55(2): 384-390, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27852672

RESUMEN

A novel Bacteroides fragilis selective (BFS) medium, consisting of a brain heart infusion agar base supplemented with yeast extract, cysteine hydrochloride, bile salts, vitamin K, hemin, glucose, esculin, ferric ammonium citrate, bromothymol blue, gentamicin, kanamycin, and novobiocin, was evaluated. When BFS agar was tested with a collection of 303 bacteria of different genera, it allowed the growth of B. fragilis as large yellow colonies, with blackening of the medium after 48 h of anaerobic incubation, while the growth of most other anaerobes, facultative anaerobes, and aerobes was inhibited. In a prospective comparison of BFS agar with a routinely used medium (neomycin blood agar) in 1,209 clinical specimens, 60 B. fragilis bacteria were detected on BFS agar while 46 were detected on the routine agar (McNemar's test, P = 0.008). In conclusion, this novel medium may be added to improve the recovery of B. fragilis in clinical specimens and to facilitate surveillance of antimicrobial-resistant strains.


Asunto(s)
Técnicas Bacteriológicas/métodos , Infecciones por Bacteroides/diagnóstico , Bacteroides fragilis/crecimiento & desarrollo , Bacteroides fragilis/aislamiento & purificación , Medios de Cultivo/química , Anaerobiosis , Infecciones por Bacteroides/microbiología , Humanos , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA