Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
2.
Nat Commun ; 14(1): 5053, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598178

RESUMEN

Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TVCD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATVCD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATVCD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TVCD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Animales , Ratones , Distribución Tisular , Anticuerpos , Ingeniería , Macaca fascicularis
3.
Front Aging Neurosci ; 14: 880221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651527

RESUMEN

Background: Electrical impedance myography (EIM) has been applied to assess muscle health conditions in neuromuscular disorders. This study aimed to detect immediate muscle electrical impedance property alterations in lower extremity of chronic stroke survivors immediately after functional electrical stimulation (FES)-assisted cycling training. Methods: Fourteen chronic stroke survivors were recruited for the current study. EIM measurements were conducted before and immediately after 40-min FES-assisted cycling training for each subject. Four interested muscle groups [rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and the medial head of gastrocnemius (MG)] were selected. Correlation analysis was performed to reveal a significant correlation between changes in EIM parameters and clinical scales [Fugl-Meyer Assessment of the lower extremity (FMA-LE); 6-min walking test (6MWT)]. Results: Immediately after training, reactance (X) and phase angle (θ) values significantly increased on the TA and MG muscles. Significant correlation was observed between X value and FMA-LE scores (r = 0.649, p = 0.012) at MG as well as X and FMA scores of the ankle joint (r = 0.612, p = 0.02). Resistance (R) and θ were significantly correlated with 6MWT score (R-6MWT: r = 0.651, p = 0.012; θ-6MWT: r = 0.621, p = 0.018). Conclusion: This brief report demonstrated that EIM can reveal the intrinsic property alteration in the paretic muscle of chronic stroke survivors immediately after FES-assisted cycling training. These alterations might be related to muscle hypertrophy (i.e., increases in muscle fiber size). This brief report might aid the understanding of the mechanism of electrical stimulation-assisted exercise in improving muscle function of stroke survivors.

4.
J Neuroeng Rehabil ; 18(1): 19, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514393

RESUMEN

BACKGROUND: Wearable ankle robotics could potentially facilitate intensive repetitive task-specific gait training on stair environment for stroke rehabilitation. A lightweight (0.5 kg) and portable exoskeleton ankle robot was designed to facilitate over-ground and stair training either providing active assistance to move paretic ankle augmenting residual motor function (power-assisted ankle robot, PAAR), or passively support dropped foot by lock/release ankle joint for foot clearance in swing phase (swing-controlled ankle robot, SCAR). In this two-center randomized controlled trial, we hypothesized that conventional training integrated with robot-assisted gait training using either PAAR or SCAR in stair environment are more effective to enhance gait recovery and promote independency in early stroke, than conventional training alone. METHODS: Sub-acute stroke survivors (within 2 months after stroke onset) received conventional training integrated with 20-session robot-assisted training (at least twice weekly, 30-min per session) on over-ground and stair environments, wearing PAAR (n = 14) or SCAR (n = 16), as compared to control group receiving conventional training only (CT, n = 17). Clinical assessments were performed before and after the 20-session intervention, including functional ambulatory category as primary outcome measure, along with Berg balance scale and timed 10-m walk test. RESULTS: After the 20-session interventions, all three groups showed statistically significant and clinically meaningful within-group functional improvement in all outcome measures (p < 0.005). Between-group comparison showed SCAR had greater improvement in functional ambulatory category (mean difference + 0.6, medium effect size 0.610) with more than 56% independent walkers after training, as compared to only 29% for CT. Analysis of covariance results showed PAAR had greater improvement in walking speed than SCAR (mean difference + 0.15 m/s, large effect size 0.752), which was in line with the higher cadence and speed when wearing the robot during the 20-session robot-assisted training over-ground and on stairs. CONCLUSIONS: Robot-assisted stair training would lead to greater functional improvement in gait independency and walking speed than conventional training in usual care. The active powered ankle assistance might facilitate users to walk more and faster with their paretic leg during stair and over-ground walking. TRIAL REGISTRATION: ClinicalTrials.gov NCT03184259. Registered on 12 June 2017.


Asunto(s)
Dispositivo Exoesqueleto , Recuperación de la Función , Robótica/métodos , Rehabilitación de Accidente Cerebrovascular/instrumentación , Adulto , Anciano , Articulación del Tobillo/fisiopatología , Femenino , Trastornos Neurológicos de la Marcha/rehabilitación , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Rehabilitación de Accidente Cerebrovascular/métodos
5.
Brain Commun ; 3(4): fcab214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35350709

RESUMEN

Predicting whether a chronic stroke patient is likely to benefit from a specific intervention can help patients establish reasonable expectations. It also provides the basis for candidates selecting for the intervention. Recent convergent evidence supports the value of network-based approach for understanding the relationship between dysfunctional neural activity and motor deficits after stroke. In this study, we applied resting-state brain connectivity networks to investigate intervention-specific predictive biomarkers of motor improvement in 22 chronic stroke participants who received either combined action observation with EEG-guided robot-hand training (Neural Guided-Action Observation Group, n = 12, age: 34-68 years) or robot-hand training without action observation and EEG guidance (non-Neural Guided-text group, n = 10, age: 42-57 years). The robot hand in Neural Guided-Action Observation training was activated only when significant mu suppression (8-12 Hz) was detected from participant's EEG signals in ipsilesional hemisphere while it was randomly activated in non-Neural Guided-text training. Only the Neural Guided-Action Observation group showed a significant long-term improvement in their upper-limb motor functions (P < 0.5). In contrast, no significant training effect on the paretic motor functions was found in the non-Neural Guided-text group (P > 0.5). The results of brain connectivity estimated via EEG coherence showed that the pre-training interhemispheric connectivity of delta, theta, alpha and contralesional connectivity of beta were motor improvement related in the Neural Guided-Action Observation group. They can not only differentiate participants with good and poor recovery (interhemispheric delta: P = 0.047, Hedges' g = 1.409; interhemispheric theta: P = 0.046, Hedges' g = 1.333; interhemispheric alpha: P = 0.038, Hedges' g = 1.536; contralesional beta: P = 0.027, Hedges' g = 1.613) but also significantly correlated with post-training intervention gains (interhemispheric delta: r = -0.901, P < 0.05; interhemispheric theta: r = -0.702, P < 0.05; interhemispheric alpha: r = -0.641, P < 0.05; contralesional beta: r = -0.729, P < 0.05). In contrast, no EEG coherence was significantly correlated with intervention gains in the non-Neural Guided-text group (all P s > 0.05 ). Partial least square regression showed that the combination of pre-training interhemispheric and contralesional local connectivity could precisely predict intervention gains in the Neural Guided-Action Observation group with a strong correlation between predicted and observed intervention gains (r = 0.82 r = 0.82 ) and between predicted and observed intervention outcomes (r = 0.90 r = 0.90 ). In summary, EEG-based resting-state brain connectivity networks may serve clinical decision-making by offering an approach to predicting Neural Guided-Action Observation training-induced motor improvement.

6.
Front Hum Neurosci ; 14: 611064, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551777

RESUMEN

Hand function improvement in stroke survivors in the chronic stage usually plateaus by 6 months. Brain-computer interface (BCI)-guided robot-assisted training has been shown to be effective for facilitating upper-limb motor function recovery in chronic stroke. However, the underlying neuroplasticity change is not well understood. This study aimed to investigate the whole-brain neuroplasticity changes after 20-session BCI-guided robot hand training, and whether the changes could be maintained at the 6-month follow-up. Therefore, the clinical improvement and the neurological changes before, immediately after, and 6 months after training were explored in 14 chronic stroke subjects. The upper-limb motor function was assessed by Action Research Arm Test (ARAT) and Fugl-Meyer Assessment for Upper-Limb (FMA), and the neurological changes were assessed using resting-state functional magnetic resonance imaging. Repeated-measure ANOVAs indicated that long-term motor improvement was found by both FMA (F[2,26] = 6.367, p = 0.006) and ARAT (F[2,26] = 7.230, p = 0.003). Seed-based functional connectivity analysis exhibited that significantly modulated FC was observed between ipsilesional motor regions (primary motor cortex and supplementary motor area) and contralesional areas (supplementary motor area, premotor cortex, and superior parietal lobule), and the effects were sustained after 6 months. The fALFF analysis showed that local neuronal activities significantly increased in central, frontal and parietal regions, and the effects were also sustained after 6 months. Consistent results in FC and fALFF analyses demonstrated the increase of neural activities in sensorimotor and fronto-parietal regions, which were highly involved in the BCI-guided training. Clinical Trial Registration: This study has been registered at ClinicalTrials.gov with clinical trial registration number NCT02323061.

7.
J Electromyogr Kinesiol ; 50: 102376, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31775110

RESUMEN

Constant-force isometric muscle training is useful for increasing the maximal strength , rehabilitation and work-fatigue assessment. Earlier studies have shown that muscle fatigue characteristics can be used for evaluating muscle endurance limit. STUDY OBJECTIVE: To predict muscle endurance time during isometric task using frequency spectrum characteristics of surface electromyography signals along with analysis of frequency spectrum shape and scale during fatigue accumulation. METHOD: Thirteen subjects performed isometric lateral raise at 60% MVC of deltoid (lateral) till endurance limit. Time windowed sEMG frequency spectrum was modelled using 2-parameter distributions namely Gamma and Weibull for spectrum analysis and endurance prediction. RESULTS: Gamma distribution provided better spectrum fitting (P < 0.001) than Weibull distribution. Spectrum Distribution demonstrated no change in shape but shifted towards lower frequency with increase of magnitude at characteristic mode frequency. Support Vector Regression based algorithm was developed for endurance time estimation using features derived from fitted frequency spectrum. Time taken till endurance limit for acquired dataset 38.53 ± 17.33 s (Mean ± Standard Deviation) was predicted with error of 0.029 ± 4.19 s . R-square: 0.956, training and test sets RMSE was calculated as 3.96 and 4.29 s respectively. The application of the algorithm suggested that model required 70% of sEMG signal from maximum time of endurance for high prediction accuracy. CONCLUSION: Endurance Limit prediction algorithm was developed for quantification of endurance time for optimizing isometric training and rehabilitation. Our method could help personalize and change conventional training method of same weight and duration for all subjects with optimized training parameters, based upon individual sEMG activity.


Asunto(s)
Electromiografía/métodos , Contracción Isométrica , Fatiga Muscular , Aprendizaje Automático Supervisado , Adulto , Femenino , Humanos , Masculino , Fuerza Muscular , Músculo Esquelético/fisiología , Resistencia Física
8.
IEEE Int Conf Rehabil Robot ; 2019: 65-70, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374608

RESUMEN

In this paper, we present the new personalized 3D printed soft robotic hand for providing rehabilitation training and daily activities assistance to stroke survivors. The Soft-Elastic Composite Actuator (SECA) on the robotic hand is direct 3D printed to accommodate with different finger sizes. Flexion and extension can be actively facilitated on the SECA using the same pressurizing source. Iterative learning model predictive control (ILMPC) method is used to be the control algorithm of SECA. At 160 kPa of maximum input pressure, results show that the actuator bending angles can reach to 137 °, and tip output force can also reach to 2.45 N. Multiple 3D printed SECAs are integrated to a 3D printed hand base and then to be worn on stroke survivors. Two stroke survivors are recruited to evaluate the intention-based rehabilitation training with the 3D printed soft robotic hand, which improvement of their hand function can be observed on performing some daily tasks such as grasping a coin.


Asunto(s)
Mano/fisiología , Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular/instrumentación , Algoritmos , Diseño de Equipo , Dispositivo Exoesqueleto , Fuerza de la Mano , Humanos , Impresión Tridimensional , Rango del Movimiento Articular
9.
Soft Robot ; 6(2): 289-304, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30874489

RESUMEN

Soft robotic hand/gloves for hand rehabilitation can aid the performance of activities of daily living (ADL). Although existing soft robotic hands can assist with finger flexion, few have addressed finger extension, which is a challenging task for stroke patients due to poststroke spasticity. In this article, we describe the design of a composite actuator, the soft-elastic composite actuator (SECA), to facilitate both finger flexion and extension. A double-segmented SECA comprising two serially connected fiber-reinforced actuators with two bottom torque-compensating layers was fabricated. The SECA bends and extends by pneumatic actuation, and the torque-compensating layers offer an assistive bending moment to configure the bending moment inside the SECA. The principles associated with selection of the torque-compensating layer are described. Analytical models were established to quantify the input pressure and the bending angle of SECA with free bending and when placed on a model compromised hand. The analytical models were validated experimentally and by the finite element method. Moreover, a stroke survivor was recruited to test the new robotic glove integrated with the multiple double-segmented SECA. The robotic glove facilitated hand opening and closing by the patient, and successfully assisted with grasp of a Chinese chess piece and twisting of a towel.


Asunto(s)
Diseño de Equipo/instrumentación , Robótica/instrumentación , Actividades Cotidianas , Anciano , Dispositivo Exoesqueleto , Dedos/fisiología , Guantes Protectores , Fuerza de la Mano/fisiología , Humanos , Masculino , Procedimientos Quirúrgicos Robotizados/instrumentación , Torque
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2345-2348, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30440877

RESUMEN

With the growing aging and overall population, the demand for healthcare professionals and their burden increases by time. Effective balance recovery reaction is required to prevent falls. The aim of this project is to provide low-cost portable balance training system that trains the two important components of effective balance recovery reaction: faster movement completion time (MT) and larger range of motion (ROM). This is done by a Kinect-based interactive rapid movement therapy training platform for reaching and stepping actions. The platform provides real-time feedback to the patient, generates a report for healthcare professionals to monitor the patient's progress, and can be utilized in patient's home or community centers. A pilot study to test the platform was conducted on seventeen stroke patients and it has shown significant improvement in both MT (faster) and ROM (larger).


Asunto(s)
Modalidades de Fisioterapia/instrumentación , Equilibrio Postural , Rehabilitación de Accidente Cerebrovascular/instrumentación , Accidentes por Caídas/prevención & control , Humanos , Movimiento , Proyectos Piloto
11.
Protein Eng Des Sel ; 30(9): 627-637, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28985411

RESUMEN

Bispecific antibodies offer a clinically validated platform for drug discovery. In generating functionally active bispecific antibodies, it is necessary to identify a unique parental antibody pair to merge into a single molecule. However, technologies that allow high-throughput production of bispecific immunoglobulin Gs (BsIgGs) for screening purposes are limited. Here, we describe a novel bispecific antibody format termed tethered-variable CLBsIgG (tcBsIgG) that allows robust production of intact BsIgG in a single cell line, concurrently ensuring cognate light chain pairing and preserving key antibody structural and functional properties. This technology is broadly applicable in the generation of BsIgG from a variety of antibody isotypes, including human BsIgG1, BsIgG2 and BsIgG4. The practicality of the tcBsIgG platform is demonstrated by screening BsIgGs generated from FGF21-mimetic anti-Klotho-ß agonistic antibodies in a combinatorial manner. This screen identified multiple biepitopic combinations with enhanced agonistic activity relative to the parental monoclonal antibodies, thereby demonstrating that biepitopic antibodies can acquire enhanced functionality compared to monospecific parental antibodies. By design, the tcBsIgG format is amenable to high-throughput production of large panels of bispecific antibodies and thus can facilitate the identification of rare BsIgG combinations to enable the discovery of molecules with improved biological function.


Asunto(s)
Anticuerpos Biespecíficos/biosíntesis , Anticuerpos Monoclonales/biosíntesis , Ensayos Analíticos de Alto Rendimiento , Inmunoglobulina G/biosíntesis , Ingeniería de Proteínas/métodos , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Células CHO , Clonación Molecular , Cricetulus , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/inmunología , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/genética , Proteínas Klotho , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
IEEE Int Conf Rehabil Robot ; 2017: 801-805, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28813918

RESUMEN

Functional Electrical Stimulation (FES) cycling could benefit people with Spinal Cord Injury (SCI). The FES cycling involves large muscle groups during the training, and thus improves the cardiovascular function, increases the muscle bulk and reduces the secondary complications. This study developed an outdoor FES exercise cycling system for complete SCI persons to exercise their lower limbs without putting extra load on upper extremities. The mechanical structure of the cycling system was specially redesigned to secure the SCI persons in the cycling system. A six-phase-angle-driven control algorithm was designed to stimulate the quadriceps and hamstrings muscles. Two training modes, i.e., continuous mode and on-off mode, were designed and tested to increase the duration of the electrical stimulation to reduce muscle fatigue. A complete SCI volunteer participated in this training for six months. Beneficial effects could be observed such as paralyzed lower limb muscles had regained the muscle mass and reduced edema from the improved blood circulation. Moreover, the SCI volunteer attended the Cybathlon FES-bike competition in Zurich in October 2016 with Team Phoenix from the CUHK.


Asunto(s)
Ciclismo , Terapia por Estimulación Eléctrica , Extremidad Inferior/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Adulto , Terapia por Estimulación Eléctrica/instrumentación , Terapia por Estimulación Eléctrica/métodos , Electrodos , Femenino , Humanos , Músculo Esquelético/fisiopatología , Adulto Joven
13.
J Biol Chem ; 292(9): 3900-3908, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28077575

RESUMEN

The antibody Fc region regulates antibody cytotoxic activities and serum half-life. In a therapeutic context, however, the cytotoxic effector function of an antibody is often not desirable and can create safety liabilities by activating native host immune defenses against cells expressing the receptor antigens. Several amino acid changes in the Fc region have been reported to silence or reduce the effector function of antibodies. These earlier studies focused primarily on the interaction of human antibodies with human Fc-γ receptors, and it remains largely unknown how such changes to Fc might translate to the context of a murine antibody. We demonstrate that the commonly used N297G (NG) and D265A, N297G (DANG) variants that are efficacious in attenuating effector function in primates retain potent complement activation capacity in mice, leading to safety liabilities in murine studies. In contrast, we found an L234A, L235A, P329G (LALA-PG) variant that eliminates complement binding and fixation as well as Fc-γ-dependent, antibody-dependent, cell-mediated cytotoxity in both murine IgG2a and human IgG1. These LALA-PG substitutions allow a more accurate translation of results generated with an "effectorless" antibody between mice and primates. Further, we show that both human and murine antibodies containing the LALA-PG variant have typical pharmacokinetics in rodents and retain thermostability, enabling efficient knobs-into-holes bispecific antibody production and a robust path to generating highly effector-attenuated bispecific antibodies for preclinical studies.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Inmunoglobulina G/química , Animales , Formación de Anticuerpos , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Complemento C1q/inmunología , Cricetinae , Cristalografía por Rayos X , Ensayo de Inmunoadsorción Enzimática , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/genética , Ratones , Conformación Proteica , Receptores de IgG/metabolismo , Temperatura
14.
Neuron ; 89(1): 70-82, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26687840

RESUMEN

The blood-brain barrier (BBB) poses a major challenge for developing effective antibody therapies for neurological diseases. Using transcriptomic and proteomic profiling, we searched for proteins in mouse brain endothelial cells (BECs) that could potentially be exploited to transport antibodies across the BBB. Due to their limited protein abundance, neither antibodies against literature-identified targets nor BBB-enriched proteins identified by microarray facilitated significant antibody brain uptake. Using proteomic analysis of isolated mouse BECs, we identified multiple highly expressed proteins, including basigin, Glut1, and CD98hc. Antibodies to each of these targets were significantly enriched in the brain after administration in vivo. In particular, antibodies against CD98hc showed robust accumulation in brain after systemic dosing, and a significant pharmacodynamic response as measured by brain Aß reduction. The discovery of CD98hc as a robust receptor-mediated transcytosis pathway for antibody delivery to the brain expands the current approaches available for enhancing brain uptake of therapeutic antibodies.


Asunto(s)
Anticuerpos/uso terapéutico , Transporte Biológico/fisiología , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Receptores de Transferrina/metabolismo , Animales , Anticuerpos/inmunología , Células Endoteliales/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/inmunología , Ratones , Proteómica/métodos , Transcitosis/fisiología
15.
Science ; 350(6263): 961-5, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26586761

RESUMEN

Axon pathfinding is orchestrated by numerous guidance cues, including Slits and their Robo receptors, but it remains unclear how information from multiple cues is integrated or filtered. Robo3, a Robo family member, allows commissural axons to reach and cross the spinal cord midline by antagonizing Robo1/2-mediated repulsion from midline-expressed Slits and potentiating deleted in colorectal cancer (DCC)-mediated midline attraction to Netrin-1, but without binding either Slits or Netrins. We identified a secreted Robo3 ligand, neural epidermal growth factor-like-like 2 (NELL2), which repels mouse commissural axons through Robo3 and helps steer them to the midline. These findings identify NELL2 as an axon guidance cue and establish Robo3 as a multifunctional regulator of pathfinding that simultaneously mediates NELL2 repulsion, inhibits Slit repulsion, and facilitates Netrin attraction to achieve a common guidance purpose.


Asunto(s)
Axones/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Médula Espinal/embriología , Animales , Axones/metabolismo , Ligandos , Proteínas de la Membrana/genética , Ratones , Ratones Mutantes , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Netrina-1 , Neurogénesis/genética , Receptores de Superficie Celular , Receptores Inmunológicos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Roundabout
16.
Sci Transl Med ; 6(261): 261ra154, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25378646

RESUMEN

Using therapeutic antibodies that need to cross the blood-brain barrier (BBB) to treat neurological disease is a difficult challenge. We have shown that bispecific antibodies with optimized binding to the transferrin receptor (TfR) that target ß-secretase (BACE1) can cross the BBB and reduce brain amyloid-ß (Aß) in mice. Can TfR enhance antibody uptake in the primate brain? We describe two humanized TfR/BACE1 bispecific antibody variants. Using a human TfR knock-in mouse, we observed that anti-TfR/BACE1 antibodies could cross the BBB and reduce brain Aß in a TfR affinity-dependent fashion. Intravenous dosing of monkeys with anti-TfR/BACE1 antibodies also reduced Aß both in cerebral spinal fluid and in brain tissue, and the degree of reduction correlated with the brain concentration of anti-TfR/BACE1 antibody. These results demonstrate that the TfR bispecific antibody platform can robustly and safely deliver therapeutic antibody across the BBB in the primate brain.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/inmunología , Anticuerpos Biespecíficos/farmacocinética , Antígenos CD/inmunología , Ácido Aspártico Endopeptidasas/inmunología , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Receptores de Transferrina/inmunología , Administración Intravenosa , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Animales , Anticuerpos Biespecíficos/administración & dosificación , Anticuerpos Biespecíficos/sangre , Anticuerpos Biespecíficos/inmunología , Especificidad de Anticuerpos , Antígenos CD/genética , Antígenos CD/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Transporte Biológico , Células CHO , Cricetulus , Reacciones Cruzadas , Regulación hacia Abajo , Células HEK293 , Humanos , Macaca fascicularis , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fragmentos de Péptidos/líquido cefalorraquídeo , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Transfección
17.
IEEE Int Conf Rehabil Robot ; 2013: 6650392, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24187211

RESUMEN

Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.


Asunto(s)
Terapia por Ejercicio/métodos , Mano/fisiopatología , Destreza Motora/fisiología , Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular , Terapia por Ejercicio/instrumentación , Humanos , Masculino , Persona de Mediana Edad , Contracción Muscular/fisiología , Recuperación de la Función , Robótica/métodos , Resultado del Tratamiento
18.
Sci Transl Med ; 5(183): 183ra57, 1-12, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23636093

RESUMEN

Bispecific antibodies using the transferrin receptor (TfR) have shown promise for boosting antibody uptake in brain. Nevertheless, there are limited data on the therapeutic properties including safety liabilities that will enable successful development of TfR-based therapeutics. We evaluate TfR/BACE1 bispecific antibody variants in mouse and show that reducing TfR binding affinity improves not only brain uptake but also peripheral exposure and the safety profile of these antibodies. We identify and seek to address liabilities of targeting TfR with antibodies, namely, acute clinical signs and decreased circulating reticulocytes observed after dosing. By eliminating Fc effector function, we ameliorated the acute clinical signs and partially rescued a reduction in reticulocytes. Furthermore, we show that complement mediates a residual decrease in reticulocytes observed after Fc effector function is eliminated. These data raise important safety concerns and potential mitigation strategies for the development of TfR-based therapies that are designed to cross the blood-brain barrier.


Asunto(s)
Anticuerpos Biespecíficos/efectos adversos , Especificidad de Anticuerpos/inmunología , Barrera Hematoencefálica/inmunología , Receptores de Transferrina/inmunología , Enfermedad Aguda , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacocinética , Afinidad de Anticuerpos/inmunología , Ácido Aspártico Endopeptidasas/metabolismo , Barrera Hematoencefálica/patología , Proteínas del Sistema Complemento/metabolismo , Relación Dosis-Respuesta Inmunológica , Haplorrinos/sangre , Humanos , Ratones , Receptores de Transferrina/sangre , Recuento de Reticulocitos
19.
Clin Cancer Res ; 18(21): 6040-8, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22962439

RESUMEN

PURPOSE: MNRP1685A is a monoclonal antibody to neuropilin-1 (NRP1). We evaluated blood-based pharmacodynamic biomarkers of MNRP1685A in two phase I studies to assess exposure/response relationships to inform target dose and regimen selection. EXPERIMENTAL DESIGN: The phase I studies evaluated escalating doses of MNRP1685A as a single agent or in combination with bevacizumab. Plasma placental growth factor (PlGF), VEGF, and circulating NRP1 (cNRP1) were evaluated at multiple time points using meso-scale discovery (MSD) assays and ELISA, respectively. Plasma PlGF was also measured in a phase I/II trial of bevacizumab in metastatic breast cancer (AVF0776). The association between PlGF and MNRP1685A dose was described by a sigmoid E(max) model. cNRP1 and MNRP1685A PK profiles were described using a two-target quasi-steady state (QSS) model. RESULTS: A dose- and time-dependent increase in plasma PlGF and cNRP1 was observed in all patients treated with MNRP1685A. PK/PD analysis showed that bevacizumab and MNRP1685A had an additive effect in elevating PlGF. Predictions based on the two-target QSS model showed that the free drug concentration to maintain greater than 90% saturation of membrane NRP1 (mNRP1) and cNRP1 is about 8 µg/mL. CONCLUSION: These data show that MNRP1685A inhibits the VEGF pathway in humans as assessed by an increase in plasma PlGF. MNRP1685A seems to enhance bevacizumab-mediated VEGF pathway blockade, as showed by an increase in the magnitude of PlGF elevation when combined with bevacizumab. PK/PD analysis of biomarkers in the phase I population allowed identification of doses at which apparent maximal pathway modulation was observed.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de la Angiogénesis/farmacocinética , Animales , Biomarcadores/sangre , Glicosilfosfatidilinositoles/sangre , Humanos , Macaca fascicularis , Estadificación de Neoplasias , Neuropilina-1/sangre , Transducción de Señal/efectos de los fármacos
20.
Bioanalysis ; 4(6): 703-11, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22452261

RESUMEN

BACKGROUND: In evaluating the serum concentrations in mice of a Sema3E IgG1 Fc fusion protein, a possible antitumor agent, two ELISAs were developed: a generic assay detecting only the Fc portion of the therapeutic and a specific receptor-binding assay detecting intact protein. RESULTS: An unexpected discrepancy was observed in the measured in vivo serum concentrations, with the generic ELISA yielding higher concentrations than the specific ELISA. Size-exclusion HPLC and SDS-PAGE analysis of in vitro serum stability samples revealed extensive aggregation of Sema3E-Fc. The generic assay recovered more Sema3E-Fc in the presence of aggregates than the specific assay. CONCLUSION: Biophysical characterization combined with immunochemical analysis was key to elucidating not only the nature of the protein instability, but also the cause for the assay discrepancy.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Fragmentos Fc de Inmunoglobulinas/metabolismo , Proteínas Recombinantes de Fusión/sangre , Semaforinas/metabolismo , Animales , Anticuerpos/inmunología , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Ratones , Estabilidad Proteica , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacocinética , Semaforinas/genética , Semaforinas/inmunología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...