Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Manag Res ; 12: 13607-13616, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33447080

RESUMEN

PURPOSE: Lung cancer is the leading cause of cancer-related mortality and non-small-cell lung cancer (NSCLC) accounts for 80-90% of all lung cancers. However, biomarkers to predict the prognosis of NSCLC patients upon treatment with tyrosine kinase inhibitors remain unreliable. Different types of EGFR mutations can help predict the efficacy of tyrosine kinase inhibitor (TKI) treatment among advanced NSCLC patients harboring them. However, survival varies among individuals harboring the same mutation after targeted therapy. This study aimed to investigate the value of serum tumor markers (STMs) and EGFR mutations in the prognostic assessment of progression-free survival (PFS) in advanced-stage EGFR-mutated NSCLC. PATIENTS AND METHODS: A retrospective clinical review was performed on 81 NSCLC patients harboring EGFR mutations and for whom STM data, measured before commencement of first-line treatment with tyrosine kinase inhibitors, were available. Associations among EGFR mutations, STMs, baseline clinical features, and PFS were analyzed. Kaplan-Meier method was used to plot survival curves, and Cox logistic regression models were used to identify independent prognostic factors. RESULTS: Exon 19 deletion (19-del) in EGFR, negative neuron-specific enolase (NSE), negative pro-gastrin-releasing peptide precursor (ProGRP) value, and "never smoking" status were significantly associated with improved PFS (P=0.007, P=0.001, P<0.001, and P<0.001, respectively). Multivariate Cox analysis revealed that 19-del in EGFR, never smoking, negative ProGRP value, and negative NSE were independent predictors of PFS. CONCLUSION: This study demonstrated that 19-del in EGFR may predict longer PFS in advanced-stage EGFR-mutated NSCLC treated with TKIs. Additionally, longer PFS can be predicted by serum tumor markers with negative ProGRP value, negative NSE value before initial treatment, and "never smoking." Therefore, in addition to the EGFR mutation type and smoking status, physicians can also prognosticate the PFS of tyrosine kinase inhibitors treatment according to the values of ProGRP and NSE before treatment.

2.
Zhongguo Fei Ai Za Zhi ; 18(12): 727-33, 2015 Dec.
Artículo en Chino | MEDLINE | ID: mdl-26706948

RESUMEN

BACKGROUND: Recent research shows thioridazine which is a kind of phenothiazine antipsychotic drugs can inhibit the proliferation of various tumor cells in vitro, but the role of thioridazine on lung cancer has not been reported. So we choose PC9 cell lines as the research object, the aim is to oberve the killing effect of thioridazine on PC9 cells and investigate its possible mechanism. METHODS: After being treated with different concentrations of thioridazine, the proliferation of PC9 cells was determined by methyl thiazolyltetrazolium (MTT) assay. Flow cytometry was used to measure the cell cycle distribution and apoptosis. The expressions of cell cycle-associated protein CyclinD1 and apoptosis-related proteins Caspase-3, Caspase-8, Caspase-9, Bcl-2, Bax and Bcl-xl were detected by Western blot. RESULTS: The proliferation of PC9 cells was significantly inhibited by thioridazine in a dose- and time-dependent manner. Flow cytometry showed that cell cycle was arrested in G0/G1 phase and the apoptotic rates were significantly increased with the increasing concentration of thioridazine. Compared with the control group, the differences were statistically significant (P<0.05). Western blot analysis showed that, compared with the control group, thioridazine reduced the expressions of CyclinD1, Bcl-2 and Bcl-xl (P<0.01) and increased the expression of Bax (P<0.01). In the mean time, thioridazine promoted the activities of Caspase-3, Caspase-8 and Caspase-9 (P<0.01). CONCLUSIONS: The mechanism of thioridazine inhibiting the proliferation of PC9 cells may be related to stimulation of Caspase apoptotic pathway, down-regulation of CyclinD1, Bcl-2, Bcl-xl and up-regulation of Bax.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Tioridazina/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/fisiopatología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...