Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106232

RESUMEN

Dogs and laboratory mice are commonly trained to perform complex tasks by guiding them through a curriculum of simpler tasks ('shaping'). What are the principles behind effective shaping strategies? Here, we propose a machine learning framework for shaping animal behavior, where an autonomous teacher agent decides its student's task based on the student's transcript of successes and failures on previously assigned tasks. Using autonomous teachers that plan a curriculum in a common sequence learning task, we show that near-optimal shaping algorithms adaptively alternate between simpler and harder tasks to carefully balance reinforcement and extinction. Based on this intuition, we derive an adaptive shaping heuristic with minimal parameters, which we show is near-optimal on the sequence learning task and robustly trains deep reinforcement learning agents on navigation tasks that involve sparse, delayed rewards. Extensions to continuous curricula are explored. Our work provides a starting point towards a general computational framework for shaping animal behavior.

2.
bioRxiv ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37961548

RESUMEN

Within a single sniff, the mammalian olfactory system can decode the identity and concentration of odorants wafted on turbulent plumes of air. Yet, it must do so given access only to the noisy, dimensionally-reduced representation of the odor world provided by olfactory receptor neurons. As a result, the olfactory system must solve a compressed sensing problem, relying on the fact that only a handful of the millions of possible odorants are present in a given scene. Inspired by this principle, past works have proposed normative compressed sensing models for olfactory decoding. However, these models have not captured the unique anatomy and physiology of the olfactory bulb, nor have they shown that sensing can be achieved within the 100-millisecond timescale of a single sniff. Here, we propose a rate-based Poisson compressed sensing circuit model for the olfactory bulb. This model maps onto the neuron classes of the olfactory bulb, and recapitulates salient features of their connectivity and physiology. For circuit sizes comparable to the human olfactory bulb, we show that this model can accurately detect tens of odors within the timescale of a single sniff. We also show that this model can perform Bayesian posterior sampling for accurate uncertainty estimation. Fast inference is possible only if the geometry of the neural code is chosen to match receptor properties, yielding a distributed neural code that is not axis-aligned to individual odor identities. Our results illustrate how normative modeling can help us map function onto specific neural circuits to generate new hypotheses.

3.
Phys Rev E ; 105(6-1): 064118, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35854590

RESUMEN

Understanding how feature learning affects generalization is among the foremost goals of modern deep learning theory. Here, we study how the ability to learn representations affects the generalization performance of a simple class of models: deep Bayesian linear neural networks trained on unstructured Gaussian data. By comparing deep random feature models to deep networks in which all layers are trained, we provide a detailed characterization of the interplay between width, depth, data density, and prior mismatch. We show that both models display samplewise double-descent behavior in the presence of label noise. Random feature models can also display modelwise double descent if there are narrow bottleneck layers, while deep networks do not show these divergences. Random feature models can have particular widths that are optimal for generalization at a given data density, while making neural networks as wide or as narrow as possible is always optimal. Moreover, we show that the leading-order correction to the kernel-limit learning curve cannot distinguish between random feature models and deep networks in which all layers are trained. Taken together, our findings begin to elucidate how architectural details affect generalization performance in this simple class of deep regression models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...