Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 13(1): 2356149, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38747061

RESUMEN

Lassa virus (LASV), a risk-group 4 pathogen, must be handled in biosafety level-4 (BSL-4) conditions, thereby limiting its research and antiviral development. Here, we developed a novel LASV reverse genetics system which, to our knowledge, is the first to study the complete LASV life cycle under BSL-2 conditions. Viral particles can be produced efficiently when LASV minigenomic RNA harbouring minimal viral cis-elements and reporter genes is transfected into a helper cell line stably expressing viral NP, GP, Z and L proteins. The resulting defective virions, named LASVmg, can propagate only in the helper cell line, providing a BSL-2 model to study the complete LASV life cycle. Using this model, we found that a previously reported cellular receptor α-dystroglycan is dispensable for LASVmg infection. Furthermore, we showed that ribavirin can inhibit LASVmg infection by inducing viral mutations. This new BSL-2 system should facilitate studying the LASV life cycle and screening antivirals.


Asunto(s)
Virus Lassa , Genética Inversa , Virus Lassa/genética , Virus Lassa/fisiología , Genética Inversa/métodos , Humanos , Animales , Antivirales/farmacología , Chlorocebus aethiops , Línea Celular , Replicación Viral , Fiebre de Lassa/virología , Ribavirina/farmacología , Células Vero , Contención de Riesgos Biológicos , Genoma Viral , Virión/genética , Virión/metabolismo
2.
J Med Virol ; 95(12): e29290, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38102947

RESUMEN

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. Among its 8 genotypes (GT), GT3 has a relatively lower sustained virological response to highly effective direct-acting antiviral agents (DAA). Sofosbuvir (SOF), an anti-NS5B polymerase inhibitor, is a core component of many anti-HCV DAA cocktail regimens, and its resistant mutations are rare in clinics because these mutations usually severely impair the NS5B polymerase activity, including a mutation S282T in NS5B, the most frequently reported SOF-resistant mutation. In this study, we selected SOF-resistant variants of a previously developed GT3 subgenomic replicon (PR87A7). Two mutations were identified in the viral genome of SOF-resistant PR87A7 variants, Q606R in nontargeted NS3 and S282T in targeted N5SB. We demonstrated that Q606R could rescue the replication defect of S282T in PR87A7, and the resulting double mutant confers the SOF resistance. Finally, we showed that NS3-606R could not compensate for the replication defect of S282T in other GTs. In conclusion, we identified a novel GT3-specific combination of two mutations that confers SOF resistance. Our result calls for attention to potential mutations that may arise in nontargeted viral proteins during the SOF-based DAA treatment of chronic HCV.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Humanos , Sofosbuvir/farmacología , Sofosbuvir/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Hepacivirus/genética , Hepatitis C/tratamiento farmacológico , Mutación , Proteínas no Estructurales Virales/genética , Genotipo , Replicón , Farmacorresistencia Viral/genética
3.
J Med Virol ; 95(9): e29103, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721366

RESUMEN

Hepatitis C virus (HCV) infection remains a challenge to human public health despite the development of highly effective direct-acting antivirals (DAAs). Sofosbuvir (SOF), a key component in most DAA-based anti-HCV cocktail regimens, is a potent viral RNA polymerase (NS5B) inhibitor with a high barrier to drug resistance. The serine-to-threonine mutation at NS5B 282 (S282T) confers the SOF resistance, but severely impairs viral replication in most HCV genotypes (GTs) and cannot be stably maintained after the termination of the SOF-based therapies. In this study, we first developed a new HCV GT-6a subgenomic replicon PR58D6. Next, we selected SOF-resistant PR58D6 variants by culturing the replicon cells in the presence of SOF. Interestingly, unlike many other HCV replicons which require additional mutations to compensate for the S282T-inducing fitness loss, S282T alone in PR58D6 is genetically stable and confers the SOF resistance without significantly impairing viral replication. Furthermore, we showed that amino acid residue at NS5B 74 (R74) and 556 (D556) which are conserved in GT 6a HCV contribute to efficient replication of PR58D6 containing S282T. Finally, we showed that the G556D mutation in NS5B could rescue the replication deficiency of the S282T in JFH1, a GT-2a replicon. In conclusion, we showed that a novel GT-6a HCV replicon may easily render SOF resistance, which may call for attention to potential drug resistance during DAA therapies of HCV GT-6a patients.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Humanos , Sofosbuvir/farmacología , ARN Subgenómico , Hepacivirus/genética , Antivirales/farmacología , Hepatitis C/tratamiento farmacológico , Genotipo
4.
Virology ; 586: 91-104, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37506590

RESUMEN

Hepatitis C virus (HCV) infection causes severe liver diseases and remains a major global public health concern. Current direct-acting antiviral (DAA)-based therapies that target viral proteins involving HCV genome replication are effective, however a minority of patients still fail to cure HCV, rendering a window to develop additional antivirals particularly targeting host functions involving in HCV infection. Here, we utilized the HCV infection cell culture system (HCVcc) to screen in-house compounds bearing host-interacting preferred scaffold for the antiviral activity. Compound HXL-10, a novel fused bicyclic derivative of pyrrolidine and imidazolidinone, was identified as a potent anti-HCV agent with a low cytotoxicity and high specificity. Mechanistic studies showed that HXL-10 neither displayed a virucidal effect nor inhibited HCV genomic RNA replication. Instead, HXL-10 might inhibit HCV assembly by targeting host functions. In summary, we developed a novel anti-HCV agent that may potentially offer additive benefits to the current anti-HCV DDA.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Hepacivirus/genética , Replicación Viral , Pirrolidinas/farmacología
5.
Comput Struct Biotechnol J ; 20: 5902-5910, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382186

RESUMEN

The hepatitis C virus (HCV) p7 viroporin protein is essential for viral assembly and release, suggesting its unrealised potential as a target for HCV interventions. Several classes of small molecules that can inhibit p7 through allosteric mechanisms have shown low efficacy. Here, we used a high throughput virtual screen to design a panel of eight novel cyclic penta-peptides (CPs) that target the p7 channel with high binding affinity. Further examination of the effects of these CPs in viral production assays indicated that CP7 exhibits the highest potency against HCV among them. Moreover, the IC50 efficacy of CP7 in tests of strain Jc1-S282T suggested that this cyclopeptide could also effectively inhibit a drug-resistant HCV strain. A combination of nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations revealed that CP7 blocking activity relies on direct binding to the p7 channel lumen at the N-terminal bottleneck region. These findings thus present a promising anti-HCV cyclic penta-peptide targeting p7 viroporin, while also describing an alternative strategy for designing a new class of p7 channel blockers for strains resistant to direct-acting antiviral agents (DAA).

6.
Antiviral Res ; 197: 105224, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864126

RESUMEN

Despite the excellent antiviral potency of direct-acting antivirals (DAAs) against hepatitis C virus (HCV), emergence of drug-resistant viral mutations remains a potential challenge. Sofobuvir (SOF), a nucleotide analog targeting HCV NS5B - RNA-dependent RNA polymerase (RdRp), constitutes a key component of many anti-HCV cocktail regimens and confers a high barrier for developing drug resistance. The serine to threonine mutation at the amino acid position 282 of NS5B (S282T) is the mostly documented SOF resistance-associated substitution (RAS), but severely hampers the virus fitness. In this study, we first developed new genotype 1b (GT1b) subgenomic replicon cells, denoted PR52D4 and PR52D9, directly from a GT1b clinical isolate. Next, we obtained SOF-resistant and replication-competent PR52D4 replicon by culturing the replicon cells in the presence of SOF. Sequencing analysis showed that the selected replicon harbored two mutations K74R and S282T in NS5B. Reverse genetics analysis showed that while PR52D4 consisting of either single mutation K74R or S282T could not replicate efficiently, the engineering of the both mutations led to a replication-competent and SOF-resistant PR52D4 replicon. Furthermore, we showed that the K74R mutation could also rescue the replication deficiency of the S282T mutation in Con1, another GT1b replicon as well as in JFH1, a GT2a replicon. Structural modeling analysis suggested that K74R might help maintain an active catalytic conformation of S282T by engaging with Y296. In conclusion, we identified the combination of two NS5B mutations S282T and K74R as a novel RAS that confers a substantial resistance to SOF while retains the HCV replication capacity.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Variación Genética , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Replicón/genética , Sofosbuvir/farmacología , Genotipo , Hepacivirus/aislamiento & purificación , Hepatitis C/virología , Humanos , Replicón/efectos de los fármacos
7.
Nat Microbiol ; 6(7): 921-931, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34127846

RESUMEN

Zoonotic arenaviruses can lead to life-threating diseases in humans. These viruses encode a large (L) polymerase that transcribes and replicates the viral genome. At the late stage of replication, the multifunctional Z protein interacts with the L polymerase to shut down RNA synthesis and initiate virion assembly. However, the mechanism by which the Z protein regulates the activity of L polymerase is unclear. Here, we used cryo-electron microscopy to resolve the structures of both Lassa and Machupo virus L polymerases in complex with their cognate Z proteins, and viral RNA, to 3.1-3.9 Å resolutions. These structures reveal that Z protein binding induces conformational changes in two catalytic motifs of the L polymerase, and restrains their conformational dynamics to inhibit RNA synthesis, which is supported by hydrogen-deuterium exchange mass spectrometry analysis. Importantly, we show, by in vitro polymerase reactions, that Z proteins of Lassa and Machupo viruses can cross-inhibit their L polymerases, albeit with decreased inhibition efficiencies. This cross-reactivity results from a highly conserved determinant motif at the contacting interface, but is affected by other variable auxiliary motifs due to the divergent evolution of Old World and New World arenaviruses. These findings could provide promising targets for developing broad-spectrum antiviral drugs.


Asunto(s)
Arenavirus del Nuevo Mundo/química , Virus Lassa/química , ARN Polimerasa Dependiente del ARN/química , Proteínas Virales/química , Secuencias de Aminoácidos , Antivirales/farmacología , Arenavirus del Nuevo Mundo/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Virus Lassa/metabolismo , Mutación , Unión Proteica/efectos de los fármacos , Conformación Proteica , ARN Viral/química , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
mSphere ; 6(3)2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952663

RESUMEN

Ebola virus (EBOV) is a highly pathogenic negative-stranded RNA virus that has caused several deadly endemics in the past decades. EBOV reverse genetics systems are available for studying live viruses under biosafety level 4 (BSL-4) or subviral particles under BSL-2 conditions. However, these systems all require cotransfection of multiple plasmids expressing viral genome and viral proteins essential for EBOV replication, which is technically challenging and unable to naturally mimic virus propagation using the subviral particle. Here, we established a new EBOV reverse genetics system only requiring transfection of a single viral RNA genome into an engineered cell line that stably expresses viral nucleoprotein (NP), viral protein 35 (VP35), VP30, and large (L) proteins and has been fine-tuned for its superior permissiveness for EBOV replication. Using this system, subviral particles expressing viral VP40, glycoprotein (GP), and VP24 could be produced and continuously propagated and eventually infect the entire cell population. We demonstrated the authentic response of the subviral system to antivirals and uncovered that the VP35 amount is critical for optimal virus replication. Furthermore, we showed that fully infectious virions can be efficiently rescued by delivering the full-length EBOV genome into the same supporting cell, and the efficiency is not affected by genome polarity or virus variant specificity. In summary, our work provides a new tool for studying EBOV under different biosafety levels.IMPORTANCE Ebola virus is among the most dangerous viral pathogens, with a case fatality rate of up to 90%. Since 2013, the two largest and most complex Ebola outbreaks in Africa have revealed the lack of investigation on this notorious virus. A reverse genetics system is an important tool for studying viruses by producing mutant viruses or generating safer and convenient model systems. Here, we developed an EBOV life cycle modeling system in which subviral particles can spontaneously propagate in cell culture. In addition, this system can be employed to rescue infectious virions of homologous or heterologous EBOV isolates using either sense or antisense viral RNA genomes. In summary, we developed a new tool for EBOV research.


Asunto(s)
Ebolavirus/genética , Genoma Viral , ARN Viral/genética , Genética Inversa/métodos , Línea Celular , Virología/métodos
9.
Molecules ; 26(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802584

RESUMEN

Hepatitis C Virus (HCV) is the key cause of chronic and severe liver diseases. The recent direct-acting antiviral agents have shown the clinical success on HCV-related diseases, but the rapid HCV mutations of the virus highlight the sustaining necessity to develop new drugs. p7, the viroporin protein from HCV, has been sought after as a potential anti-HCV drug target. Several classes of compounds, such as amantadine and rimantadine have been testified for p7 inhibition. However, the efficacies of these compounds are not high. Here, we screened some novel p7 inhibitors with amantadine scaffold for the inhibitor development. The dissociation constant (Kd) of 42 ARD-series compounds were determined by nuclear magnetic resonance (NMR) titrations. The efficacies of the two best inhibitors, ARD87 and ARD112, were further confirmed using viral production assay. The binding mode analysis and binding stability for the strongest inhibitor were deciphered by molecular dynamics (MD) simulation. These ARD-series compounds together with 49 previously published compounds were further analyzed by molecular docking. Key pharmacophores were identified among the structure-similar compounds. Our studies suggest that different functional groups are highly correlated with the efficacy for inhibiting p7 of HCV, in which hydrophobic interactions are the dominant forces for the inhibition potency. Our findings provide guiding principles for designing higher affinity inhibitors of p7 as potential anti-HCV drug candidates.


Asunto(s)
Antivirales/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Desarrollo de Medicamentos , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Proteínas Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Antivirales/química , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Proliferación Celular , Hepacivirus/aislamiento & purificación , Hepatitis C/complicaciones , Hepatitis C/virología , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Simulación del Acoplamiento Molecular , Células Tumorales Cultivadas
10.
PLoS Pathog ; 17(3): e1009392, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33760889

RESUMEN

Coronavirus interaction with its viral receptor is a primary genetic determinant of host range and tissue tropism. SARS-CoV-2 utilizes ACE2 as the receptor to enter host cell in a species-specific manner. We and others have previously shown that ACE2 orthologs from New World monkey, koala and mouse cannot interact with SARS-CoV-2 to mediate viral entry, and this defect can be restored by humanization of the restrictive residues in New World monkey ACE2. To better understand the genetic determinants behind the ability of ACE2 orthologs to support viral entry, we compared koala and mouse ACE2 sequences with that of human and identified the key residues in koala and mouse ACE2 that restrict viral receptor activity. Humanization of these critical residues rendered both koala and mouse ACE2 capable of binding the spike protein and facilitating viral entry. Our study shed more lights into the genetic determinants of ACE2 as the functional receptor of SARS-CoV-2, which facilitates our understanding of viral entry.


Asunto(s)
COVID-19/enzimología , COVID-19/genética , Peptidil-Dipeptidasa A/genética , Receptores Virales/genética , SARS-CoV-2/fisiología , Animales , Secuencia de Bases , COVID-19/virología , Especificidad del Huésped , Humanos , Ratones/genética , Ratones/virología , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Phascolarctidae/genética , Phascolarctidae/virología , Receptores Virales/metabolismo , SARS-CoV-2/genética , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
11.
Sci Adv ; 7(2)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523994

RESUMEN

Hepatitis C virus (HCV) remains a major human pathogen that requires better understanding of virus-host interactions. In this study, we performed a genome-wide CRISPR-Cas9 screening and identified TRIM26, an E3 ligase, as a critical HCV host factor. Deficiency of TRIM26 specifically impairs HCV genome replication. Mechanistic studies showed that TRIM26 interacts with HCV-encoded NS5B protein and mediates its K27-linked ubiquitination at residue K51, and thus promotes the NS5B-NS5A interaction. Moreover, mouse TRIM26 does not support HCV replication because of its unique six-amino acid insert that prevents its interaction with NS5B. Ectopic expression of human TRIM26 in a mouse hepatoma cell line that has been reconstituted with other essential HCV host factors promotes HCV infection. In conclusion, we identified TRIM26 as a host factor for HCV replication and a new determinant of host tropism. These results shed light on HCV-host interactions and may facilitate the development of an HCV animal model.

12.
Chem Eng J ; 414: 128788, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33558800

RESUMEN

Previous observations have been reported that viruses were inactivated using strong irradiation. Here, new evidence was disclosed by studying the effects of nanosized TiO2 on viral pathogens under a low irradiation condition (0.4 mW/cm2 at UVA band) that mimics the field setting. We showed that photo-activated TiO2 efficiently inhibits hepatitis C virus infection, and weak indoor light with intensity of 0.6 mW/cm2 at broad-spectrum wavelength and around 0.15 mW/cm2 of UVA band also lead to partial inhibition. Mechanistic studies demonstrated that hydroxyl radicals produced by photo-activated TiO2 do not destroy virion structure and contents, but attack viral RNA genome, thus inactivating the virus. Furthermore, we showed that photo-activated TiO2 inactivates a broad range of human viral pathogens, including SARS-CoV-2, a novel coronavirus responsible for the ongoing COVID-19 pandemic. In conclusion, we showed that photo-catalyzed nanosized TiO2 inactivates pathogenic viruses, paving a way to its field application in control of viral infectious diseases.

13.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32554700

RESUMEN

Hepatitis C virus (HCV) infection remains a major worldwide health problem despite development of highly effective direct-acting antivirals. HCV rapidly evolves upon acute infection and generates multiple viral variants (quasispecies), leading to immune evasion and persistent viral infection. Identification of epitopes of broadly neutralizing anti-HCV antibodies (nAbs) is critical to guide HCV vaccine development. In this study, we developed a new reverse genetics system for HCV infection based on trans-complementation of viral structural proteins. The HCV genome (JFH1 strain) lacking the structural protein-coding sequence can be efficiently rescued by ectopic expression of core-E1-E2-p7-NS2 (core-NS2) or core-E1-E2-p7 (core-p7) in trans, leading to production of single-round infectious virions designated HCVΔS. JFH1-based HCVΔS can be also rescued by expressing core-NS2 of other HCV genotypes, rendering it an efficient tool to display the structural proteins of HCV strains of interests. Furthermore, we successfully rescued HCVΔS with structural proteins from clinical isolates. Multiple viral structural proteins with different sensitivities to nAbs were identified from a same patient serum, demonstrating the genetic diversity of HCV quasispecies in vivo Interestingly, the structural protein-coding sequences of highly divergent viral quasispecies from the same patient can be clustered based on their hypervariable region 1 (HVR1) in viral envelope protein E2, which critically dictates the sensitivity to neutralizing antibodies. In summary, we developed a novel reverse genetics system that efficiently displays viral structural proteins from HCV clinical isolates, and analysis of quasispecies from the same patient using this system demonstrated that E2 HVR1 is the major determinant of viral evolution in vivoIMPORTANCE A cell culture model that can recapitulate the diversity of HCV quasispecies in patients is important for analysis of neutralizing epitopes and HCV vaccine development. In this study, we developed a new reverse genetics system for HCV infection based on trans-complementation of viral structural proteins (HCVΔS). This system can be used to display structural proteins of HCV strains of multiple genotypes as well as clinical isolates. By using this system, we showed that multiple different HCV structural proteins from a same patient were displayed on HCVΔS. Interestingly, these variant structural proteins within the same patient can be classified according to the sequence of HVR1in E2, which dictates viral sensitivity to nAbs and viral evolution in vivo Our work provided a new tool to study highly divergent HCV quasispecies and shed light on underlying mechanisms driving HCV evolution.


Asunto(s)
Hepacivirus/genética , Hepacivirus/metabolismo , Cuasiespecies/genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , Evolución Molecular , Genotipo , Células HEK293 , Hepatitis C/virología , Anticuerpos contra la Hepatitis C/inmunología , Hepatitis C Crónica/inmunología , Hepatitis C Crónica/virología , Humanos , Evasión Inmune , Pruebas de Neutralización , Proteínas del Envoltorio Viral/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
J Virol ; 92(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30111563

RESUMEN

Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV can be sensed by host innate immunity to induce expression of interferons (IFNs) and a number of antiviral effectors. In this study, we found HCV infection induced the expression of neuralized E3 ubiquitin protein ligase 3 (NEURL3), a putative E3 ligase, in a manner that requires the involvement of innate immune sensing but is independent of the IFN action. Furthermore, we showed that NEURL3 inhibited HCV infection while it had little effect on other RNA viruses, including Zika virus (ZIKV), dengue virus (DENV), and vesicular stomatitis virus (VSV). Mechanistic studies demonstrated that NEURL3 inhibited HCV assembly by directly binding HCV envelope glycoprotein E1 to interfere with the E1/E2 heterodimerization, an important prerequisite for virion morphogenesis. Finally, we showed that knockout of NEURL3 significantly enhanced HCV infection. In summary, we identified NEURL3 as a novel inducible antiviral host factor that suppresses HCV assembly. Our results not only shed new insight into how host innate immunity acts against HCV but also revealed a new important biological function for NEURL3.IMPORTANCE The exact biological function of NEURL3, a putative E3 ligase, remains largely unknown. In this study, we found that NEURL3 could be upregulated upon HCV infection in a manner dependent on pattern recognition receptor-mediated innate immune response. NEURL3 inhibits HCV assembly by directly binding viral E1 envelope glycoprotein to disrupt its interaction with E2, an action that requires its Neuralized homology repeat (NHR) domain but not the RING domain. Furthermore, we found that NEURL3 has a pangenotypic anti-HCV activity and interacts with E1 of genotypes 2a, 1b, 3a, and 6a but does not inhibit other closely related RNA viruses, such as ZIKV, DENV, and VSV. To our knowledge, our study is the first report to demonstrate that NEURL3 functions as an antiviral host factor. Our results not only shed new insight into how host innate immunity acts against HCV, but also revealed a new important biological function for NEURL3.


Asunto(s)
Antivirales/farmacología , Hepatitis C/prevención & control , Inmunidad Innata/inmunología , Infecciones por Virus ARN/virología , Ubiquitina-Proteína Ligasas/farmacología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Virus del Dengue/efectos de los fármacos , Células HEK293 , Hepacivirus/clasificación , Hepacivirus/genética , Hepacivirus/inmunología , Hepatitis C/inmunología , Hepatitis C/virología , Humanos , Infecciones por Virus ARN/tratamiento farmacológico , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Ensamble de Virus , Virus Zika/efectos de los fármacos
15.
Front Immunol ; 9: 1411, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29971069

RESUMEN

Hepatitis C virus (HCV) glycoproteins E1 and E2 form a heterodimer to constitute viral envelope proteins, which play an essential role in virus entry. E1 does not directly interact with host receptors, and its functions in viral entry are exerted mostly through its interaction with E2 that directly binds the receptors. HCV enters the host cell via receptor-mediated endocytosis during which the fusion of viral and host endosomal membranes occurs to release viral genome to cytoplasm. A putative fusion peptide in E1 has been proposed to participate in membrane fusion, but its exact role and underlying molecular mechanisms remain to be deciphered. Recently solved crystal structures of the E2 ectodomains and N-terminal of E1 fail to reveal a classical fusion-like structure in HCV envelope glycoproteins. In addition, accumulating evidence suggests that E1 also plays an important role in virus assembly. In this mini-review, we summarize current knowledge on HCV E1 including its structure and biological functions in virus entry, fusion, and assembly, which may provide clues for developing HCV vaccines and more effective antivirals.

16.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29367245

RESUMEN

Defective viral genomes (DVGs) of hepatitis C virus (HCV) exist, but their biological significances have not been thoroughly investigated. Here, we analyzed HCV DVGs circulating in patient sera that possess deletions in the structural protein-encoding region. About 30% of 41 HCV clinical isolates possess DVGs that originated from the full-length genome in the same patients. No correlation between DVGs, viremia, and alanine aminotransferase (ALT) levels was found. Sequencing analysis of DVGs revealed the existence of deletion hot spots, with upstream sites in E1 and downstream sites in E2 and NS2. Interestingly, the coding sequences for the core protein and the C-terminal protease domain of NS2 were always intact in DVGs despite the fact that both proteins are dispensable for HCV genome replication. Mechanistic studies showed that transmembrane segment 3 (TMS3) of NS2, located immediately upstream of its protease domain, was required for the cleavage of NS2-NS3 and the replication of DVGs. Moreover, we identified a highly conserved secondary structure (SL750) within the core domain 2-coding region that is critical for HCV genome packaging. In summary, our analysis of serum-derived HCV DVGs revealed novel viral cis elements that play important roles in virus replication and assembly.IMPORTANCE HCV DVGs have been identified in vivo and in vitro, but their biogenesis and physiological significances remain elusive. In addition, a conventional packaging signal has not yet been identified on the HCV RNA genome, and mechanisms underlying the specificity in the encapsidation of the HCV genome into infectious particles remain to be uncovered. Here, we identified new viral cis elements critical for the HCV life cycle by determining genetic constraints that define the boundary of serum-derived HCV DVGs. We found that transmembrane segment 3 of NS2, located immediately upstream of its protease domain, was required for the cleavage of NS2-NS3 and the replication of DVGs. We identified a highly conserved secondary structure (SL750) within the core-coding region that is critical for HCV genome packaging. In summary, our analysis of serum-derived HCV DVGs revealed previously unexpected novel cis elements critical for HCV replication and morphogenesis.


Asunto(s)
Secuencia de Bases , Genoma Viral , Hepacivirus/fisiología , ARN Viral/genética , Eliminación de Secuencia , Proteínas del Envoltorio Viral/genética , Ensamble de Virus/genética , Humanos , Dominios Proteicos , Estructura Secundaria de Proteína , ARN Viral/sangre , Proteínas del Envoltorio Viral/sangre
17.
J Virol ; 91(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28100619

RESUMEN

Hepatitis C virus (HCV) is an enveloped RNA virus belonging to the Flaviviridae family. It infects mainly human hepatocytes and causes chronic liver diseases, including cirrhosis and cancer. HCV encodes two envelope proteins, E1 and E2, that form a heterodimer and mediate virus entry. While E2 has been extensively studied, less has been done so for E1, and its role in the HCV life cycle still needs to be elucidated. Here we developed a new cell culture model for HCV infection based on the trans-complementation of E1. Virus production of the HCV genome lacking the E1-encoding sequence can be efficiently rescued by the ectopic expression of E1 in trans The resulting virus, designated HCVΔE1, can propagate in packaging cells expressing E1 but results in only single-cycle infection in naive cells. By using the HCVΔE1 system, we explored the role of a putative fusion peptide (FP) of E1 in HCV infection. Interestingly, we found that the FP not only contributes to HCV entry, as previously reported, but also may be involved in virus morphogenesis. Finally, we identified amino acid residues in FP that are critical for biological functions of E1. In summary, our work not only provides a new cell culture model for studying HCV but also provides some insights into understanding the role of E1 in the HCV life cycle.IMPORTANCE Hepatitis C virus (HCV), an enveloped RNA virus, encodes two envelope proteins, E1 and E2, that form a heterodimeric complex to mediate virus entry. Compared to E2, the biological functions of E1 in the virus life cycle are not adequately investigated. Here we developed a new cell culture model for single-cycle HCV infection based on the trans-complementation of E1. The HCV genome lacking the E1-encoding sequence can be efficiently rescued for virus production by the ectopic expression of E1 in trans This new model renders a unique system to dissect functional domains and motifs in E1. Using this system, we found that a putative fusion peptide in E1 is a multifunctional structural element contributing to both HCV entry and morphogenesis. Our work has provided a new cell culture model to study HCV and provides insights into understanding the biological roles of E1 in the HCV life cycle.


Asunto(s)
Hepacivirus/fisiología , Proteínas del Envoltorio Viral/fisiología , Internalización del Virus , Línea Celular Tumoral , Técnicas de Cocultivo , Células HEK293 , Humanos , Fusión de Membrana , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Replicación Viral
18.
J Biol Chem ; 287(42): 35631-35645, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22927442

RESUMEN

High genetic heterogeneity is an important characteristic of hepatitis C virus (HCV) that contributes to its ability to establish persistent infection. The hypervariable region 1 (HVR1) that includes the first 27 amino acid residues of the E2 envelope glycoprotein is the most variable region within the HCV polyprotein. HVR1 plays a major role in both HCV cell entry and immune evasion, but the respective contribution of specific amino acid residues is still unclear. Our mutagenesis analyses of HCV pseudoparticles and cell culture-derived HCV using the H77 isolate indicate that five residues at positions 14, 15, and 25-27 mediate binding of the E2 protein to the scavenger receptor class B, type I receptor, and any residue herein is indispensable for HCV cell entry. The region spanning positions 16-24 contains the sole neutralizing epitope and is dispensable for HCV entry, but it is involved in heparan binding. More importantly, this region is necessary for the enhancement of HCV entry by high density lipoprotein and interferes with virus neutralization by E2-neutralizing antibodies. Residues at positions 1-13 are also dispensable for HCV entry, but they can affect HCV infectivity by modulating binding of the envelope protein to scavenger receptor class B, type I. Mutations occurring at this site may confer resistance to HVR1 antibodies. These findings further our understanding about the mechanisms of HCV cell entry and the significance of HVR1 variation in HCV immune evasion. They have major implications for the development of HCV entry inhibitors and prophylactic vaccines.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/inmunología , Evasión Inmune , Proteínas Virales/inmunología , Internalización del Virus , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , Antígenos CD36/genética , Antígenos CD36/inmunología , Antígenos CD36/metabolismo , Hepatitis C/genética , Hepatitis C/prevención & control , Humanos , Estructura Terciaria de Proteína , Vacunas contra Hepatitis Viral/genética , Vacunas contra Hepatitis Viral/inmunología , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Proteínas Virales/metabolismo
19.
Wei Sheng Yan Jiu ; 40(3): 295-8, 2011 May.
Artículo en Chino | MEDLINE | ID: mdl-21695897

RESUMEN

OBJECTIVE: To explore the feasibility of induction of neutralization antibodies against hepatitis C virus (HCV) infection by HCV envelope 2 protein (E2) DNA vaccines immunization. METHODS: Two kinds of expression plasmids of HCV envelope 2 protein, plasmid pCI-1b661 Delta encoding hydrophobic carboxyl terminal truncated E2 and pCI-1b661 Delta encoding E2 with deletion of hypervariable region 1 (HVR1) and carboxyl terminal, were constructed and respectively transfeted 293T cells, and truncated E2 protein in whole cell lysate and supernatant of 293T cells were analyzed by Western blot. After BALB/c mouse were intramuscularly immunized by the plasmids, sera antibodies against HVR1 were detected by ELISA and the neutralization activity of the antibodies were assayed with HCV pseudotype particle (HCVpp). RESULTS: Both plasmids could express secretary truncated E2 protein. All the mice immunized with plasmid pCI-1b661 produced HVR1 antibodies,while no HVR1 antibodies were detected in pCI-1b661 Delta immunized mice. The sera neutralization percentages against HCVpp in pCI1lb661 Delta and pCI-lb661 Delta immunized mice were (78.5 +/- 13.8)% and (38.7 +/- 6.5)%, respectively (P <0.01). Sera neutralization activity against HCVpp was positive correlated with the level of HVR1 antibodies in pCI-1b661 immunized mice (r = 0.967, P<0.01). CONCLUSION: DNA vaccines expressing truncated E2 protein could induce neutralization antibodies against HCV, and neutralization antibodies mainly was consisted of the antibodies against HVR1.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antihepatitis/inmunología , Hepatitis C/prevención & control , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/inmunología , Proteínas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Hepacivirus/genética , Hepacivirus/inmunología , Anticuerpos Antihepatitis/sangre , Hepatitis C/inmunología , Inmunización , Ratones , Ratones Endogámicos BALB C , Vacunas de ADN/inmunología , Vacunas contra Hepatitis Viral/genética
20.
PLoS One ; 6(4): e18933, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21526201

RESUMEN

HCV infection is often associated with B-cell regulatory control disturbance and delayed appearance of neutralizing antibodies. CD81 is a cellular receptor for HCV and can bind to HCV envelope protein 2 (E2). CD81 also participates to form a B cell costimulatory complex. To investigate whether HCV influences B cell activation and immune function through E2 -CD81 engagement, here, human Burkitt's lymphoma cell line Raji cells and primary human B lymphocytes (PHB) were treated with HCV E2 protein and cell culture produced HCV particles (HCVcc), and then the related cell phenotypes were assayed. The results showed that both E2 and HCVcc triggered phosphorylation of IκBα, enhanced the expression of anti-apoptosis Bcl-2 family proteins, and protected Raji cells and PHB cells from Fas-mediated death. In addition, both E2 protein and HCVcc increased the expression of costimulatory molecules CD80, CD86 and CD81 itself, and decreased the expression of complement receptor CD21. The effects were dependent on E2-CD81 interaction on the cell surface, since CD81-silenced Raji cells did not respond to both treatments; and an E2 mutant that lose the CD81 binding activity, could not trigger the responses of both Raji cells and PHB cells. The effects were not associated with HCV replication in cells, for HCV pseudoparticle (HCVpp) and HCVcc failed to infect Raji cells. Hence, E2-CD81 engagement may contribute to HCV-associated B cell lymphoproliferative disorders and insufficient neutralizing antibody production.


Asunto(s)
Antígenos CD/metabolismo , Apoptosis , Linfocitos B/citología , Citoprotección , Hepacivirus/fisiología , Proteínas del Envoltorio Viral/metabolismo , Receptor fas/metabolismo , Linfocitos B/metabolismo , Biomarcadores/metabolismo , Línea Celular , Células Cultivadas , Humanos , Proteínas I-kappa B/metabolismo , Activación de Linfocitos , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Fosforilación , Prohibitinas , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Virales/metabolismo , Receptores Depuradores de Clase B/metabolismo , Tetraspanina 28 , Regulación hacia Arriba , Virión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA