Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Electrochem Energ Rev ; 5(3): 7, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37522152

RESUMEN

Electrocatalytic production of hydrogen peroxide (H2O2) via the 2e- transfer route of the oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone process, which dominates current industrial-scale production of H2O2. The availability of cost-effective electrocatalysts exhibiting high activity, selectivity, and stability is imperative for the practical deployment of this process. Single-atom catalysts (SACs) featuring the characteristics of both homogeneous and heterogeneous catalysts are particularly well suited for H2O2 synthesis and thus, have been intensively investigated in the last few years. Herein, we present an in-depth review of the current trends for designing SACs for H2O2 production via the 2e- ORR route. We start from the electronic and geometric structures of SACs. Then, strategies for regulating these isolated metal sites and their coordination environments are presented in detail, since these fundamentally determine electrocatalytic performance. Subsequently, correlations between electronic structures and electrocatalytic performance of the materials are discussed. Furthermore, the factors that potentially impact the performance of SACs in H2O2 production are summarized. Finally, the challenges and opportunities for rational design of more targeted H2O2-producing SACs are highlighted. We hope this review will present the latest developments in this area and shed light on the design of advanced materials for electrochemical energy conversion.

2.
Small ; 17(9): e1904126, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31608601

RESUMEN

Direct methanol fuel cells (DMFCs) are among the most promising portable power supplies because of their unique advantages, including high energy density/mobility of liquid fuels, low working temperature, and low emission of pollutants. Various metal-based anode catalysts have been extensively studied and utilized for the essential methanol oxidation reaction (MOR) due to their superior electrocatalytic performance. At present, especially with the rapid advance of nanotechnology, enormous efforts have been exerted to further enhance the catalytic performance and minimize the use of precious metals. Constructing multicomponent metal-based nanocatalysts with precisely designed structures can achieve this goal by providing highly tunable compositional and structural characteristics, which is promising for the modification and optimization of their related electrochemical properties. The recent advances of metal-based electrocatalytic materials with rationally designed nanostructures and chemistries for MOR in DMFCs are highlighted and summarized herein. The effects of the well-defined nanoarchitectures on the improved electrochemical properties of the catalysts are illustrated. Finally, conclusive perspectives are provided on the opportunities and challenges for further refining the nanostructure of metal-based catalysts and improving electrocatalytic performance, as well as the commercial viability.

3.
Adv Mater ; 32(40): e2004382, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32876982

RESUMEN

Electrochemical nitrogen reduction reaction (NRR) over nonprecious-metal and single-atom catalysts has received increasing attention as a sustainable strategy to synthesize ammonia. However, the atomic-scale regulation of such active sites for NRR catalysis remains challenging because of the large distance between them, which significantly weakens their cooperation. Herein, the utilization of regular surface cavities with unique microenvironment on graphitic carbon nitride as "subnano reactors" to precisely confine multiple Fe and Cu atoms for NRR electrocatalysis is reported. The synergy of Fe and Cu atoms in such confined subnano space provides significantly enhanced NRR performance, with nearly doubles ammonia yield and 54%-increased Faradic efficiency up to 34%, comparing with the single-metal counterparts. First principle simulation reveals this synergistic effect originates from the unique Fe-Cu coordination, which effectively modifies the N2 absorption, improves electron transfer, and offers extra redox couples for NRR. This work thus provides new strategies of manipulating catalysts active centers at the sub-nanometer scale.

4.
Angew Chem Int Ed Engl ; 59(19): 7356-7361, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32084292

RESUMEN

The electrochemical nitrogen reduction reaction (NRR) is a promising energy-efficient and low-emission alternative to the traditional Haber-Bosch process. Usually, the competing hydrogen evolution reaction (HER) and the reaction barrier of ambient electrochemical NRR are significant challenges, making a simultaneous high NH3 formation rate and high Faradic efficiency (FE) difficult. To give effective NRR electrocatalysis and suppressed HER, the surface atomic structure of W18 O49 , which has exposed active W sites and weak binding for H2 , is doped with Fe. A high NH3 formation rate of 24.7 µg h-1 mgcat -1 and a high FE of 20.0 % are achieved at an overpotential of only -0.15 V versus the reversible hydrogen electrode. Ab initio calculations reveal an intercalation-type doping of Fe atoms in the tunnels of the W18 O49 crystal structure, which increases the oxygen vacancies and exposes more W active sites, optimizes the nitrogen adsorption energy, and facilitates the electrocatalytic NRR.

5.
Adv Mater ; 31(5): e1802822, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30480839

RESUMEN

Present mobile devices, transportation tools, and renewable energy technologies are more dependent on newly developed battery chemistries than ever before. Intrinsic properties, such as safety, high energy density, and cheapness, are the main objectives of rechargeable batteries that have driven their overall technological progress over the past several decades. Unfortunately, it is extremely hard to achieve all these merits simultaneously at present. Alternatively, exploration of the most suitable batteries to meet the specific requirements of an individual application tends to be a more reasonable and easier choice now and in the near future. Based on this concept, here, a range of promising alternatives to lithium-sulfur batteries that are constructed with non-Li metal anodes (e.g., Na, K, Mg, Ca, and Al) and sulfur cathodes are discussed. The systems governed by these new chemistries offer high versatility in meeting the specific requirements of various applications, which is directly linked with the broad choice in battery chemistries, materials, and systems. Herein, the operating principles, materials, and remaining issues for each targeted battery characteristics are comprehensively reviewed. By doing so, it is hoped that their design strategies are illustrated and light is shed on the future exploration of new metal-sulfur batteries and advanced materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...