Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 794, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940972

RESUMEN

The occurrence and progression of tumors can be established through a complex interplay among tumor cells undergoing epithelial-mesenchymal transition (EMT), invasive factors and immune cells. In this study, we employed single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (ST) to evaluate the pseudotime trajectory and spatial interactive relationship between EMT-invasive malignant tumors and immune cells in primary colorectal cancer (CRC) tissues at different stages (stage I/II and stage III with tumor deposit). Our research characterized the spatiotemporal relationship among different invasive tumor programs by constructing pseudotime endpoint-EMT-invasion tumor programs (EMTPs) located at the edge of ST, utilizing evolution trajectory analysis integrated with EMT-invasion genes. Strikingly, the invasive and expansive process of tumors undergoes remarkable spatial reprogramming of regulatory and immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), regulatory T cells (Treg), and exhausted T cells (Tex). These EMTP-adjacent cell are linked to EMT-related invasion genes, especially the C-X-C motif ligand 1 (CXCL1) and CXCL8 genes that are important for CRC prognosis. Interestingly, the EMTPs in stage I mainly produce an inflammatory margin invasive niche, while the EMTPs in stage III tissues likely produce a hypoxic pre-invasive niche. Our data demonstrate the crucial role of regulatory and immunosuppressive cells in tumor formation and progression of CRC. This study provides a framework to delineate the spatiotemporal invasive niche in CRC samples.


Asunto(s)
Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Humanos , Transición Epitelial-Mesenquimal/genética , Neoplasias Colorrectales/patología , Pronóstico , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Microambiente Tumoral
2.
Genomics ; 115(5): 110693, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37532089

RESUMEN

OBJECTIVE: This research discussed the specific mechanism by which PIAS1 affects acute pancreatitis (AP). METHODS: PIAS1, Foxa2, and FTO expression was assessed in Cerulein-induced AR42J cells and mice. Loss- and gain-of-function assays and Cerulein induction were conducted in AR42J cells and mice for analysis. The relationship among PIAS1, Foxa2, and FTO was tested. Cell experiments run in triplicate, and eight mice for each animal group. RESULTS: Cerulein-induced AP cells and mice had low PIAS1 and Foxa2 and high FTO. Cerulein induced pancreatic injury in mice and inflammation and oxidative stress in pancreatic tissues, which could be reversed by PIAS1 or Foxa2 upregulation or FTO downregulation. PIAS1 elevated SUMO modification of Foxa2 to repress FTO transcription. FTO upregulation neutralized the ameliorative effects of PIAS1 or Foxa2 upregulation on Cerulein-induced AR42J cell injury, inflammation, and oxidative stress. CONCLUSION: PIAS1 upregulation diminished FTO transcription by increasing Foxa2 SUMO modification, thereby ameliorating Cerulein-induced AP.


Asunto(s)
Pancreatitis , Animales , Ratones , Enfermedad Aguda , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Ceruletida/metabolismo , Ceruletida/toxicidad , Regulación hacia Abajo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Inflamación , Pancreatitis/inducido químicamente , Pancreatitis/genética , Sumoilación , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA