Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
medRxiv ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39314969

RESUMEN

Aims/hypothesis: The nPOD-Virus group collaboratively applied innovative technologies to detect and sequence viral RNA in pancreas and other tissues from organ donors with type 1 diabetes. These analyses involved the largest number of pancreas samples collected to date. Methods: We analysed pancreas, spleen, pancreatic lymph nodes, and duodenum samples from the following donor groups: a) donors with type 1 diabetes (n=71), with (n=35) or without (n=36) insulin-containing islets, (b) donors with single or double islet autoantibody positivity without diabetes (n=22) and c) autoantibody-negative donors without diabetes (control donors) (n=74). Five research laboratories participated in this collaborative effort using approaches for unbiased discovery of RNA viruses (two RNA-Seq platforms), targeted detection of Enterovirus A-D species using RT-PCR, and tests for virus growth in cell-culture. Results: Direct RNA-Seq did not detect virus signal in pancreas samples, whereas RT-PCR detected enterovirus RNA confirmed by sequencing in low amounts in pancreas samples in three of the five donor groups, namely donors with type 1 diabetes with insulin-containing islets, 16% (5/32) donors being positive, donors with single islet autoantibody positivity with 53% (8/15) donors being positive, and non-diabetic donors with 8% (4/49) being enterovirus RNA positive. Detection of enterovirus RNA was significantly more frequent in single islet autoantibody-positive donors compared to donors with type 1 diabetes with insulin-deficient islets (p-value <0.001) and control donors (p-value 0.004). In some donors, pancreatic lymph nodes were also positive. RT-PCR detected enterovirus RNA also in spleen of a small number of donors and virus enrichment in susceptible cell lines before RT-PCR resulted in much higher rate in spleen positivity, particularly in donors with type 1 diabetes. Interestingly, the enterovirus strains detected did not cause a typical lytic infection, possibly reflecting their persistence-prone nature. Conclusions/interpretation: This was the largest coordinated effort to examine the presence of enterovirus RNA in pancreas of organ donors with type 1 diabetes, using a multitude of assays. These findings are consistent with the notion that both the subjects with type 1 diabetes and those with islet autoantibodies may carry a low-grade enterovirus infection in the pancreas and lymphoid tissues.

2.
Vaccines (Basel) ; 12(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38932399

RESUMEN

Current mRNA vaccines are mainly administered via intramuscular injection, which induces good systemic immunity but limited mucosal immunity. Achieving mucosal immunity through mRNA vaccination could diminish pathogen replication at the entry site and reduce interhuman transmission. However, delivering mRNA vaccines to mucosae faces challenges like mRNA degradation, poor entry into cells, and reactogenicity. Encapsulating mRNA in extracellular vesicles may protect the mRNA and reduce reactogenicity, making mucosal mRNA vaccines possible. Plant-derived extracellular vesicles from edible fruits have been investigated as mRNA carriers. Studies in animals show that mRNA vehiculated in orange-derived extracellular vesicles can elicit both systemic and mucosal immune responses when administered by the oral, nasal, or intramuscular routes. Once lyophilized, these products show remarkable stability. The optimization of mRNA to improve translation efficiency, immunogenicity, reactogenicity, and stability can be obtained through adjustments of the 5'cap region, poly-A tail, codons selection, and the use of nucleoside analogues. Recent studies have also proposed self-amplifying RNA vaccines containing an RNA polymerase as well as circular mRNA constructs. Data from parenterally primed animals demonstrate the efficacy of nasal immunization with non-adjuvanted protein, and studies in humans indicate that the combination of a parenteral vaccine with the natural exposure of mucosae to the same antigen provides protection and reduces transmission. Hence, mucosal mRNA vaccination would be beneficial at least in organisms pre-treated with parenteral vaccines. This practice could have wide applications for the treatment of infectious diseases.

3.
Endocrine ; 83(1): 110-117, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37698811

RESUMEN

PURPOSE: SARS-CoV-2 infection may be limited to the respiratory tract or may spread to multiple organs. Besides disease severity, factors associated with virus spread within the host are elusive. Here, we tried to identify features associated with SARS-CoV-2 spread to endocrine organs. METHODS: In a retrospective autoptic cohort of 51 subjects who died because of COVID-19, we analyzed the severity and type of lung pathology, patients' features and the detection of virus in thyroid, testis, adrenal gland, pancreas, anterior pituitary, and the white adipose tissue (WAT). RESULTS: The SARS-CoV-2 genome was detected in endocrine organs of 30/51 cases. The anterior pituitary and WAT were most frequently positive for virus. While pathological features of lung were not associated with the presence of virus in endocrine organs, obesity (BMI > 30) was significantly associated to virus detection in pancreas (p = 0.01) and thyroid (p = 0.04). WAT infection was detected more frequently in males (p = 0.03). CONCLUSION: In subject with obesity dying of COVID-19, the virus frequently spreads to endocrine organs. The findings emphasize the need for optimal treatment of patients with obesity at the very onset of COVID-19. Since post-COVID conditions remain a major issue worldwide, a rigorous follow-up of endocrine function-especially of thyroid and pancreas-is advocated in subjects with obesity.


Asunto(s)
COVID-19 , Masculino , Humanos , COVID-19/patología , SARS-CoV-2 , Estudios Retrospectivos , Pulmón , Obesidad/epidemiología , Obesidad/patología , Autopsia
5.
J Mol Med (Berl) ; 101(8): 973-986, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246981

RESUMEN

Altered circulating hormone and metabolite levels have been reported during and post-COVID-19. Yet, studies of gene expression at the tissue level capable of identifying the causes of endocrine dysfunctions are lacking. Transcript levels of endocrine-specific genes were analyzed in five endocrine organs of lethal COVID-19 cases. Overall, 116 autoptic specimens from 77 individuals (50 COVID-19 cases and 27 uninfected controls) were included. Samples were tested for the SARS-CoV-2 genome. The adrenals, pancreas, ovary, thyroid, and white adipose tissue (WAT) were investigated. Transcript levels of 42 endocrine-specific and 3 interferon-stimulated genes (ISGs) were measured and compared between COVID-19 cases (virus-positive and virus-negative in each tissue) and uninfected controls. ISG transcript levels were enhanced in SARS-CoV-2-positive tissues. Endocrine-specific genes (e.g., HSD3B2, INS, IAPP, TSHR, FOXE1, LEP, and CRYGD) were deregulated in COVID-19 cases in an organ-specific manner. Transcription of organ-specific genes was suppressed in virus-positive specimens of the ovary, pancreas, and thyroid but enhanced in the adrenals. In WAT of COVID-19 cases, transcription of ISGs and leptin was enhanced independently of virus detection in tissue. Though vaccination and prior infection have a protective role against acute and long-term effects of COVID-19, clinicians must be aware that endocrine manifestations can derive from virus-induced and/or stress-induced transcriptional changes of individual endocrine genes. KEY MESSAGES: • SARS-CoV-2 can infect adipose tissue, adrenals, ovary, pancreas and thyroid. • Infection of endocrine organs induces interferon response. • Interferon response is observed in adipose tissue independently of virus presence. • Endocrine-specific genes are deregulated in an organ-specific manner in COVID-19. • Transcription of crucial genes such as INS, TSHR and LEP is altered in COVID-19.


Asunto(s)
COVID-19 , Femenino , Humanos , COVID-19/genética , SARS-CoV-2/genética , Interferones , Páncreas
6.
J Clin Endocrinol Metab ; 108(4): 950-961, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36260523

RESUMEN

CONTEXT: Infection by SARS-CoV-2 may be associated with testicular dysfunction that could affect male fertility. OBJECTIVE: Testicles of fatal COVID-19 cases were investigated to detect virus in tissue and to evaluate histopathological and transcriptomic changes. METHODS: Three groups were compared: (a) uninfected controls (subjects dying of trauma or sudden cardiac death; n = 10); (b) subjects dying of COVID-19 (virus-negative in testes; n = 15); (c) subjects dying of COVID-19 (virus-positive in testes; n = 9). SARS-CoV-2 genome and nucleocapsid antigen were probed using RT-PCR, in situ hybridization, and immunohistochemistry (IHC). Infiltrating leukocytes were typed by IHC. mRNA transcripts of immune-related and testis-specific genes were quantified using the nCounter method. RESULTS: SARS-CoV-2 was detected in testis tissue of 9/24 (37%) COVID-19 cases accompanied by scattered T-cell and macrophage infiltrates. Size of testicles and counts of spermatogenic cells were not significantly different among groups. Analysis of mRNA transcripts showed that in virus-positive testes immune processes were activated (interferon-alpha and -gamma pathways). By contrast, transcription of 12 testis-specific genes was downregulated, independently of virus positivity in tissue. By IHC, expression of the luteinizing hormone/choriogonadotropin receptor was enhanced in virus-positive compared to virus-negative testicles, while expression of receptors for androgens and the follicle-stimulating hormone were not significantly different among groups. CONCLUSION: In lethal COVID-19 cases, infection of testicular cells is not uncommon. Viral infection associates with activation of interferon pathways and downregulation of testis-specific genes involved in spermatogenesis. Due to the exceedingly high numbers of infected people in the pandemic, the impact of virus on fertility should be further investigated.


Asunto(s)
COVID-19 , Testículo , Masculino , Humanos , Testículo/patología , COVID-19/metabolismo , Regulación hacia Arriba , Regulación hacia Abajo , Autopsia , SARS-CoV-2 , ARN Mensajero/metabolismo
7.
Front Endocrinol (Lausanne) ; 13: 938633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909527

RESUMEN

Introduction: Evidence points to viral infections as possible triggers of autoimmune thyroid disease (AITD), but little is known about the prevalence of common viruses in the thyroid gland. Using a novel approach based on virus enrichment in multiple cell lines followed by detection of the viral genome and visualization of viral proteins, we investigated the presence of multiple human viruses in thyroid tissue from AITD patients and controls. Methods: Thyroid tissue was collected by core needle biopsy or during thyroid surgery from 35 patients with AITD (20 Graves' disease and 15 Hashimoto's thyroiditis). Eighteen thyroid tissue specimens from patients undergoing neck surgery for reasons other than thyroid autoimmunity served as controls. Specimens were tested for the presence of ten different viruses. Enteroviruses and human herpesvirus 6 were enriched in cell culture before detection by PCR and immunofluorescence, while the remaining viruses were detected by PCR of biopsied tissue. Results: Forty of 53 cases (75%) carried an infectious virus. Notably, 43% of all cases had a single virus, whereas 32% were coinfected by two or more virus types. An enterovirus was found in 27/53 cases (51%), human herpesvirus 6 in 16/53 cases (30%) and parvovirus B19 in 12/53 cases (22%). Epstein-Barr virus and cytomegalovirus were found in a few cases only. Of five gastroenteric virus groups examined, only one was detected in a single specimen. Virus distribution was not statistically different between AITD cases and controls. Conclusion: Common human viruses are highly prevalent in the thyroid gland. This is the first study in which multiple viral agents have been explored in thyroid. It remains to be established whether the detected viruses represent causal agents, possible cofactors or simple bystanders.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Enfermedad de Graves , Enfermedad de Hashimoto , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/epidemiología , Enfermedad de Graves/complicaciones , Enfermedad de Hashimoto/etiología , Herpesvirus Humano 4 , Humanos , Prevalencia
8.
Diabetologia ; 65(12): 2108-2120, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35953727

RESUMEN

AIMS/HYPOTHESIS: Enterovirus (EV) infection of pancreatic islet cells is one possible factor contributing to type 1 diabetes development. We have reported the presence of EV genome by PCR and of EV proteins by immunohistochemistry in pancreatic sections. Here we explore multiple human virus species in the Diabetes Virus Detection (DiViD) study cases using innovative methods, including virus passage in cell cultures. METHODS: Six recent-onset type 1 diabetes patients (age 24-35) were included in the DiViD study. Minimal pancreatic tail resection was performed under sterile conditions. Eleven live cases (age 43-83) of pancreatic carcinoma without diabetes served as control cases. In the present study, we used EV detection methods that combine virus growth in cell culture, gene amplification and detection of virus-coded proteins by immunofluorescence. Pancreas homogenates in cell culture medium were incubated with EV-susceptible cell lines for 3 days. Two to three blind passages were performed. DNA and RNA were extracted from both pancreas tissue and cell cultures. Real-time PCR was used for detecting 20 different viral agents other than EVs (six herpesviruses, human polyomavirus [BK virus and JC virus], parvovirus B19, hepatitis B virus, hepatitis C virus, hepatitis A virus, mumps, rubella, influenza A/B, parainfluenza 1-4, respiratory syncytial virus, astrovirus, norovirus, rotavirus). EV genomes were detected by endpoint PCR using five primer pairs targeting the partially conserved 5' untranslated region genome region of the A, B, C and D species. Amplicons were sequenced. The expression of EV capsid proteins was evaluated in cultured cells using a panel of EV antibodies. RESULTS: Samples from six of six individuals with type 1 diabetes (cases) and two of 11 individuals without diabetes (control cases) contained EV genomes (p<0.05). In contrast, genomes of 20 human viruses other than EVs could be detected only once in an individual with diabetes (Epstein-Barr virus) and once in an individual without diabetes (parvovirus B19). EV detection was confirmed by immunofluorescence of cultured cells incubated with pancreatic extracts: viral antigens were expressed in the cytoplasm of approximately 1% of cells. Notably, infection could be transmitted from EV-positive cell cultures to uninfected cell cultures using supernatants filtered through 100 nm membranes, indicating that infectious agents of less than 100 nm were present in pancreases. Due to the slow progression of infection in EV-carrying cell cultures, cytopathic effects were not observed by standard microscopy but were recognised by measuring cell viability. Sequences of 5' untranslated region amplicons were compatible with EVs of the B, A and C species. Compared with control cell cultures exposed to EV-negative pancreatic extracts, EV-carrying cell cultures produced significantly higher levels of IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP1). CONCLUSIONS/INTERPRETATION: Sensitive assays confirm that the pancreases of all DiViD cases contain EVs but no other viruses. Analogous EV strains have been found in pancreases of two of 11 individuals without diabetes. The detected EV strains can be passaged in series from one cell culture to another in the form of poorly replicating live viruses encoding antigenic proteins recognised by multiple EV-specific antibodies. Thus, the early phase of type 1 diabetes is associated with a low-grade infection by EVs, but not by other viral agents.


Asunto(s)
Diabetes Mellitus Tipo 1 , Infecciones por Enterovirus , Enterovirus , Infecciones por Virus de Epstein-Barr , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Diabetes Mellitus Tipo 1/patología , Regiones no Traducidas 5' , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Herpesvirus Humano 4/genética , Enterovirus/genética , Páncreas/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Antígenos Virales , Extractos Pancreáticos
9.
J Clin Endocrinol Metab ; 107(8): 2243-2253, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35567590

RESUMEN

CONTEXT: Involvement of the pituitary gland in SARS-CoV-2 infection has been clinically suggested by pituitary hormone deficiency in severe COVID-19 cases, by altered serum adrenocorticotropic hormone (ACTH) levels in hospitalized patients, and by cases of pituitary apoplexy. However, the direct viral infection of the gland has not been investigated. OBJECTIVE: To evaluate whether the SARS-CoV-2 genome and antigens could be present in pituitary glands of lethal cases of COVID-19, and to assess possible changes in the expression of immune-related and pituitary-specific genes. METHODS: SARS-CoV-2 genome and antigens were searched in the pituitary gland of 23 patients who died from COVID-19 and, as controls, in 12 subjects who died from trauma or sudden cardiac death. Real-time reverse transcription polymerase chain reaction (PCR), in situ hybridization, immunohistochemistry, and transmission electron microscopy were utilized. Levels of mRNA transcripts of immune-related and pituitary-specific genes were measured by the nCounter assay. RESULTS: The SARS-CoV-2 genome and antigens were detected in 14/23 (61%) pituitary glands of the COVID-19 group, not in controls. In SARS-CoV-2-positive pituitaries, the viral genome was consistently detected by PCR in the adeno- and the neurohypophysis. Immunohistochemistry, in situ hybridization, and transmission electron microscopy confirmed the presence of SARS-CoV-2 in the pituitary. Activation of type I interferon signaling and enhanced levels of neutrophil and cytotoxic cell scores were found in virus-positive glands. mRNA transcripts of pituitary hormones and pituitary developmental/regulatory genes were suppressed in all COVID-19 cases irrespective of virus positivity. CONCLUSION: Our study supports the tropism of SARS-CoV-2 for human pituitary and encourages exploration of pituitary dysfunction after COVID-19.


Asunto(s)
COVID-19 , COVID-19/genética , Prueba de COVID-19 , Humanos , Hormonas Hipofisarias , ARN Mensajero , SARS-CoV-2/genética
10.
Folia Microbiol (Praha) ; 67(1): 109-119, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34569031

RESUMEN

Antimicrobial resistance (AMR) emergence in commensal and pathogenic bacteria is a global health issue. House flies (Musca domestica) are considered as biological and mechanical vectors for pathogens causing nosocomial infections, including methicillin-resistant Staphylococcus aureus (MRSA). However, the prevalence of antimicrobial resistance and the role of temperature on the occurrence of Staphylococcus aureus and MRSA in house flies in a hospital environment have not been studied. A total of 400 house flies were collected in winter and summer from four hospital-associated areas in Mymensingh, Bangladesh. Detection of S. aureus and MRSA in flies was done by culturing, staining, and PCR methods targeting nuc and mec genes (mecA and mecC), respectively. Disc diffusion test was used to detect resistance phenotype against six antimicrobials. Logistic regression models were constructed to assess the effect of temperature on the frequency of antimicrobial resistance, and on the presence of the nuc and mecA genes, and location of samples in and around a hospital environment. By PCR, S. aureus was detected in 208 (52%) samples. High frequencies of resistance (≥ 80% of isolates) to amoxicillin, azithromycin, and oxacillin were observed by disk diffusion test. Increase in temperature had a positive effect on the occurrence of S. aureus and MRSA isolates as well as on their resistance to individual and multiple antimicrobials. Among the study areas, hospital premises had increased odds of having S. aureus. Increased temperature of summer significantly increased the occurrence of MRSA in house flies in and around the hospital environment, which might pose a human and animal health risk.


Asunto(s)
Dípteros , Moscas Domésticas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas , Hospitales , Humanos , Resistencia a la Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas , Estaciones del Año , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...