Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(12)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38533886

RESUMEN

We performed Monte Carlo and dynamic Monte Carlo simulations to model the diffusion of monodispersed suspensions composed of impenetrable cuboidal particles, specifically hard board-like particles (HBPs), in the presence of parallel hard walls. The impact of the walls was investigated by adjusting the size of the simulation box while maintaining constant packing fractions, fixed at η = 0.150, for systems consisting of HBPs with prolate, dual-shaped, and oblate geometries. We observed that increasing the distance between the walls led to the recovery of an isotropic bulk phase, while local particle organization near the walls remained stable. Due to their shape, oblate HBPs exhibit more efficient anchoring at wall surfaces compared to prolate shapes. The formation of nematic-like particle assemblies near the walls, confirmed by theoretical calculations based on density functional theory, significantly influenced local particle dynamics. This effect was particularly pronounced to the extent that a modest portion of cuboids near the walls tended to diffuse exclusively in planes parallel to the confinement, even more efficiently than observed in the bulk regions.

2.
J Phys Chem B ; 126(45): 9325-9338, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36326490

RESUMEN

We computed the chemical potential for some alkali metal ions (K+, Rb+, and Cs+) and two halide ions (Br- and I-) in aqueous solution at ambient T and various pressures in the range 1-8000 atm. Results were obtained from classic Monte Carlo simulations in the NPT ensemble by means of the free energy perturbation method. Here, the chemical potential is computed as the sum of a term relative to a Lennard-Jones solute and a term relative to the process in which this solute is transformed into the ion. Hydrophobic and hydrophilic features of these two components of the chemical potential show opposite behaviors under isothermal compression. The increase in pressure determines an increase in the hydrophobic component, which becomes more positive with a stronger effect for larger ions. Correspondingly, the values of the hydrophilic component become more negative for alkali ions, whereas they are only slightly affected by compression for halide ions. Hydrophobic-hydrophilic quasi-compensation in the slopes is observed for Rb+. For a smaller ion, such as K+, the dependence on pressure of the hydrophilic component is slightly dominant. For a larger ion, as observed in the cases of Cs+, Br-, and I-, the hydrophobic component assumes the determinant role. Pressure dependence of the chemical potential is little affected by corrections introduced for molecular potential truncation. This view can change for possible boundary artifacts that could have affected the static electrostatic potential. Some inference is obtained from comparison with experimental data at 1 atm on the free energy of hydration. Discrepancies show the characteristic asymmetry between cations and anions. The further addition of a correction based on the static potential significantly reduces these discrepancies with important error cancellation on the sum of chemical potentials of ions of opposite charge. The correction is applied also at higher pressures, and results are compared with those obtained by adding an alternative correction that is based on the water number density. Regardless of the ion, changes of the chemical potential induced by an increase in pressure appear to be dominated by the hydrophobic component, in particular when using the alternative correction. For bromide and iodide electrolytes, the two corrections give chemical potentials in good agreement.


Asunto(s)
Metales Alcalinos , Agua , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Soluciones , Cationes
3.
Phys Rev E ; 106(3-1): 034612, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36266794

RESUMEN

By performing dynamic Monte Carlo simulations, we investigate the microrheology of isotropic suspensions of hard-core colloidal cuboids. In particular, we infer the local viscoelastic behavior of these fluids by studying the dynamics of a probe spherical particle that is incorporated in the host phase and is dragged by an external force. This technique, known as active microrheology, allows one to characterize the microscopic response of soft materials upon application of a constant force, whose intensity spans here three orders of magnitude. By tuning the geometry of cuboids from oblate to prolate as well as the system density, we observe different responses that are quantified by measuring the effective friction perceived by the probe particle. The resulting friction coefficient exhibits a linear regime at forces that are much weaker and larger than the thermal forces, whereas a nonlinear, force-thinning regime is observed at intermediate force intensities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...