Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 929: 172329, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608892

RESUMEN

As insect populations decline in many regions, conservation biologists are increasingly tasked with identifying factors that threaten insect species and developing effective strategies for their conservation. One insect group of global conservation concern are fireflies (Coleoptera: Lampyridae). Although quantitative data on firefly populations are lacking for most species, anecdotal reports suggest that some firefly populations have declined in recent decades. Researchers have hypothesized that North American firefly populations are most threatened by habitat loss, pesticide use, and light pollution, but the importance of these factors in shaping firefly populations has not been rigorously examined at broad spatial scales. Using data from >24,000 surveys (spanning 2008-16) from the citizen science program Firefly Watch, we trained machine learning models to evaluate the relative importance of a variety of factors on bioluminescent firefly populations: pesticides, artificial lights at night, land cover, soil/topography, short-term weather, and long-term climate. Our analyses revealed that firefly abundance was driven by complex interactions among soil conditions (e.g., percent sand composition), climate/weather (e.g., growing degree days), and land cover characteristics (e.g., percent agriculture and impervious cover). Given the significant impact that climactic and weather conditions have on firefly abundance, there is a strong likelihood that firefly populations will be influenced by climate change, with some regions becoming higher quality and supporting larger firefly populations, and others potentially losing populations altogether. Collectively, our results support hypotheses related to factors threatening firefly populations, especially habitat loss, and suggest that climate change may pose a greater threat than appreciated in previous assessments. Thus, future conservation of North American firefly populations will depend upon 1) consistent and continued monitoring of populations via programs like Firefly Watch, 2) efforts to mitigate the impacts of climate change, and 3) insect-friendly conservation practices.


Asunto(s)
Ciencia Ciudadana , Cambio Climático , Luciérnagas , Aprendizaje Automático , Animales , Luciérnagas/fisiología , Ecosistema , Conservación de los Recursos Naturales , Monitoreo del Ambiente/métodos
2.
Insects ; 14(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37367305

RESUMEN

Abscisic acid (ABA) is an isoprenoid-derived plant signaling molecule involved in a wide variety of plant processes, including facets of growth and development as well as responses to abiotic and biotic stress. ABA had previously been reported in a wide variety of animals, including insects and humans. We used high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-(ESI)-MS/MS) to examine concentrations of ABA in 17 species of phytophagous insects, including gall- and non-gall-inducing species from all insect orders with species known to induce plant galls: Thysanoptera, Hemiptera, Lepidoptera, Coleoptera, Diptera, and Hymenoptera. We found ABA in insect species in all six orders, in both gall-inducing and non-gall-inducing species, with no tendency for gall-inducing insects to have higher concentrations. The concentrations of ABA in insects often markedly exceeded those typically found in plants, suggesting it is highly improbable that insects obtain all their ABA from their host plant via consumption and sequestration. As a follow-up, we used immunohistochemistry to determine that ABA localizes to the salivary glands in the larvae of the gall-inducing Eurosta solidaginis (Diptera: Tephritidae). The high concentrations of ABA, combined with its localization to salivary glands, suggest that insects are synthesizing and secreting ABA to manipulate their host plants. The pervasiveness of ABA among both gall- and non-gall-inducing insects and our current knowledge of the role of ABA in plant processes suggest that insects are using ABA to manipulate source-sink mechanisms of nutrient allocation or to suppress host-plant defenses. ABA joins the triumvirate of phytohormones, along with cytokinins (CKs) and indole-3-acetic acid (IAA), that are abundant, widespread, and localized to glandular organs in insects and used to manipulate host plants.

3.
Biol Lett ; 19(3): 20220513, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36855854

RESUMEN

The morphology of insect-induced galls contributes to defences of the gall-inducing insect species against its natural enemies. In terms of gall chemistry, the only defensive compounds thus far identified in galls are tannins that accumulate in many galls, preventing damage by herbivores. Intrigued by the fruit-like appearance of the translucent oak gall (TOG; Amphibolips nubilipennis, Cynipidae, Hymenoptera) induced on red oak (Quercus rubra), we hypothesized that its chemical composition may deviate from other galls. We found that the pH of the gall is between 2 and 3, making it among the lowest pH levels found in plant tissues. We examined the organic acid content of TOG and compared it to fruits and other galls using high-performance liquid chromatography and gas chromatography-mass spectrometry. Malic acid, an acid with particularly high abundance in apples, represents 66% of the organic acid detected in TOGs. The concentration of malic acid was two times higher than in other galls and in apples. Gall histology showed that the acid-containing cells were enlarged and vacuolized just like fruits mesocarp cells. Accumulation of organic acid in gall tissues is convergent with fruit morphology and may constitute a new defensive strategy against predators and parasitoids.


Asunto(s)
Malatos , Quercus , Frutas , Herbivoria
4.
PLoS One ; 17(10): e0274920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36282832

RESUMEN

In addition to directly inducing physical and chemical defenses, herbivory experienced by plants in one generation can influence the expression of defensive traits in offspring. Plant defense phenotypes can be compromised by inbreeding, and there is some evidence that such adverse effects can extend to the transgenerational expression of induced resistance. We explored how the inbreeding status of maternal Solanum carolinense plants influenced the transgenerational effects of herbivory on the defensive traits and herbivore resistance of offspring. Manduca sexta caterpillars were used to damage inbred and outbred S. carolinense maternal plants and cross pollinations were performed to produced seeds from herbivore-damaged and undamaged, inbred and outbred maternal plants. Seeds were grown in the greenhouse to assess offspring defense-related traits (i.e., leaf trichomes, internode spines, volatile organic compounds) and resistance to herbivores. We found that feeding by M. sexta caterpillars on maternal plants had a positive influence on trichome and spine production in offspring and that caterpillar development on offspring of herbivore-damaged maternal plants was delayed relative to that on offspring of undamaged plants. Offspring of inbred maternal plants had reduced spine production, compared to those of outbred maternal plants, and caterpillars performed better on the offspring of inbred plants. Both herbivory and inbreeding in the maternal generation altered volatile emissions of offspring. In general, maternal plant inbreeding dampened transgenerational effects of herbivory on offspring defensive traits and herbivore resistance. Taken together, this study demonstrates that inducible defenses in S. carolinense can persist across generations and that inbreeding compromises transgenerational resistance in S. carolinense.


Asunto(s)
Solanum , Compuestos Orgánicos Volátiles , Solanum/química , Herbivoria , Endogamia , Compuestos Orgánicos Volátiles/metabolismo , Hojas de la Planta , Fenotipo , Plantas
5.
Am Nat ; 200(2): 292-301, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35905407

RESUMEN

AbstractAnts disperse oak galls of some cynipid wasp species similarly to how they disperse seeds with elaiosomes. We conducted choice assays in field and laboratory settings with ant-dispersed seeds and wasp-induced galls found in ant nests and found that seed-dispersing ants retrieve these galls as they do myrmecochorous seeds. We also conducted manipulative experiments in which we removed the putative ant-attracting appendages ("kapéllos") from galls and found that ants are specifically attracted to kapéllos. Finally, we compared the chemical composition and histology of ant-attracting appendages on seeds and galls and found that they both have similar fatty acid compositions as well as morphology. We also observed seed-dispersing ants retrieving oak galls to their nests and rodents and birds consuming oak galls that were not retrieved by ants. These results suggest convergence in ant-mediated dispersal between myrmecochorous seeds and oak galls. Based on our observations, a protective advantage for galls retrieved to ant nests seems a more likely benefit than dispersal distance, as has also been suggested for myrmecochorous seeds. These results require reconsideration of established ant-plant research assumptions, as ant-mediated seed and gall dispersal appear strongly convergent and galls may be far more abundant in eastern North American deciduous forests than myrmecochorous seeds.


Asunto(s)
Hormigas , Quercus , Dispersión de Semillas , Animales , Plantas , Semillas
6.
Oecologia ; 198(4): 1057-1072, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35380273

RESUMEN

Because the diet of many herbivorous insects is restricted to closely related taxa with similar chemistry, intercropping with diverse plant communities may reduce both pest populations and reliance on chemical pesticides in agroecosystems. We tested whether the effectiveness of intercropping against herbivorous insects depends on the phylogenetic relatedness of neighboring crops, using butternut squash (Cucurbita moschata) as a focal crop species in a series of different intercropping combinations. We found that increased phylogenetic divergence of neighboring plants could reduce abundance of herbivorous insects, but the effect was only detectable mid-season. In addition, we tested two hypothesized mechanisms for a negative association between phylogenetic distance of neighboring plants and reduced herbivore populations: one, we tested using Y-tube olfactometer and choice cage trials whether diverse volatile cues impede host-plant location by the dominant pest of butternut squash in our experiment, striped cucumber beetle Acalymma vittatum. Two, we recorded predator and parasitoid abundance relative to crop phylodiversity to test whether diverse crops support larger natural-enemy populations that can better control pest species. Our results, however, did not support either hypothesis. Striped cucumber beetles preferentially oriented toward non-host-plant volatiles, and predator populations more often decreased with phylodiversity than increased. Thus, the mechanisms driving associations in the field between phylogenetic divergence and herbivore populations remain unclear.


Asunto(s)
Escarabajos , Cucurbita , Animales , Herbivoria , Filogenia , Plantas
7.
Ecol Appl ; 32(5): e2598, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35343024

RESUMEN

Growing evidence suggests that conservation agricultural practices, like no-till and cover crops, help protect annual crops from insect pests by supporting populations of resident arthropod predators. While adoption of conservation practices is growing, most field crop producers are also using more insecticides, including neonicotinoid seed coatings, as insurance against early-season insect pests. This tactic may disrupt benefits associated with conservation practices by reducing arthropods that contribute to biological control. We investigated the interaction between preventive pest management (PPM) and the conservation practice of cover cropping. We also investigated an alternative pest management approach, integrated pest management (IPM), which responds to insect pest risk, rather than using insecticides prophylactically. In a 3-year corn (Zea mays mays L.)-soy (Glycine max L.) rotation, we measured the response of invertebrate pests and predators to PPM and IPM with and without a cover crop. Using any insecticide provided some small reduction to plant damage in soy, but no yield benefit. In corn, vegetative cover early in the season was key to reducing pest density and damage, likely by increasing the abundance of arthropod predators. Further, PPM in year 1 decreased predation compared to a no-pest-management control. Contrary to our expectation, the IPM strategy, which required just one insecticide application, was more disruptive to the predator community than PPM, likely because the applied pyrethroid was more acutely toxic to a wider range of arthropods than neonicotinoids. Promoting early-season cover was more effective at reducing pest density and damage than either intervention-based strategy. Our results suggest that the best pest management outcomes may occur when biological control is encouraged by planting cover crops and avoiding broad-spectrum insecticides as much as possible. As part of a conservation-based approach to farming, cover crops can promote natural-enemy populations that can help provide biological effective control of insect pest populations.


Asunto(s)
Artrópodos , Insecticidas , Animales , Productos Agrícolas , Control de Insectos , Insectos , Neonicotinoides , Control de Plagas , Control Biológico de Vectores/métodos , Estaciones del Año , Glycine max , Zea mays
8.
Biol Rev Camb Philos Soc ; 97(2): 664-678, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34802185

RESUMEN

Honeydew is the sugar-rich excretion of phloem-feeding hemipteran insects such as aphids, mealybugs, whiteflies, and psyllids, and can be a main carbohydrate source for beneficial insects in some ecosystems. Recent research has revealed that water-soluble, systemic insecticides contaminate honeydew excreted by hemipterans that feed on plants treated with these insecticides. This contaminated honeydew can be toxic to beneficial insects, such as pollinators, parasitic wasps and generalist predators that feed on it. This route of exposure has now been demonstrated in three plant species, for five systemic insecticides and four hemipteran species; therefore, we expect this route to be widely available in some ecosystems. In this perspective paper, we highlight the importance of this route of exposure by exploring: (i) potential pathways through which honeydew might be contaminated with insecticides; (ii) hemipteran families that are more likely to excrete contaminated honeydew; and (iii) systemic insecticides with different modes of action that might contaminate honeydew through the plant. Furthermore, we analyse several model scenarios in Europe and/or the USA where contaminated honeydew could be problematic for beneficial organisms that feed on this ubiquitous carbohydrate source. Finally, we explain why this route of exposure might be important when exotic, invasive, honeydew-producing species are treated with systemic insecticides. Overall, this review opens a new area of research in the field of ecotoxicology to understand how insecticides can reach non-target beneficial insects. In addition, we aim to shed light on potential undescribed causes of insect declines in ecosystems where honeydew is an important carbohydrate source for insects, and advocate for this route of exposure to be included in future environmental risk assessments.


Asunto(s)
Áfidos , Insecticidas , Animales , Carbohidratos , Ecosistema , Humanos , Insectos , Insecticidas/toxicidad
9.
PeerJ ; 9: e12495, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820205

RESUMEN

BACKGROUND: Previous research suggests that fireflies (Coleoptera: Lampyridae) are susceptible to commonly used insecticides. In the United States, there has been a rapid and widespread adoption of neonicotinoid insecticides, predominantly used as seed coatings on large-acreage crops like corn, soy, and cotton. Neonicotinoid insecticides are persistent in soil yet mobile in water, so they have potential to contaminate firefly habitats both in and adjacent to application sites. As a result, fireflies may be at high risk of exposure to neonicotinoids, possibly jeopardizing this already at-risk group of charismatic insects. METHODS: To assess the sensitivity of fireflies to neonicotinoids, we exposed larvae of Photuris versicolor complex and Photinus pyralis to multiple levels of clothianidin-treated soil and monitored feeding behavior, protective soil chamber formation, intoxication, and mortality. RESULTS: Pt. versicolor and Pn. pyralis larvae exhibited long-term intoxication and mortality at concentrations above 1,000 ng g-1 soil (1 ppm). Under sub-lethal clothianidin exposure, firefly larvae fed less and spent less time in protective soil chambers, two behavioral changes that could decrease larval survival in the wild. DISCUSSION: Both firefly species demonstrated sub-lethal responses in the lab to clothianidin exposure at field-realistic concentrations, although Pt. versicolor and Pn. pyralis appeared to tolerate higher clothianidin exposure relative to other soil invertebrates and beetle species. While these two firefly species, which are relatively widespread in North America, appear somewhat tolerant of neonicotinoid exposure in a laboratory setting, further work is needed to extend this conclusion to wild populations, especially in rare or declining taxa.

10.
Environ Entomol ; 50(6): 1257-1266, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34492115

RESUMEN

Pterostichus melanarius (Illiger, 1798) is a Palearctic generalist predator native to Europe. It was unintentionally introduced to North America at least twice in the mid 1920s and has since become widespread in Canada and the United States. Although P. melanarius is a valuable natural enemy in many different agricultural systems, we are not aware of any effort to compile in one publication details of its life history, diet, distribution, and factors that influence its populations. Some studies in North America have investigated the effects of P. melanarius on pest species and native carabid assemblages. Moreover, given that it is an exotic species whose range appears to still be expanding, it will be valuable to predict its potential distribution in North America. Therefore, the goals of this paper are to: 1) compile information on the life history and biology of P. melanarius, 2) review the effects of various agricultural practices on this species, and 3) use ecological niche modeling to determine the potential range of P. melanarius in the United States and which climate variables are most important for range expansion. Our review revealed that P. melanarius appears to provide benefits most consistently in diverse agricultural systems managed with no-till or reduced till methods, whereas our modeling revealed that P. melanarius likely occupies, or will occupy, more of the northern U.S. than is currently recognized, particularly in the Appalachian and Rocky Mountain regions.


Asunto(s)
Escarabajos , Agricultura , Animales , Biología , Ecosistema , América del Norte
11.
Environ Sci Technol ; 55(8): 4679-4687, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33749272

RESUMEN

Neonicotinoids from insecticidal seed coatings can contaminate soil in treated fields and adjacent areas, posing a potential risk to nontarget organisms and ecological function. To determine if cover crops can mitigate neonicotinoid contamination in treated and adjacent areas, we measured neonicotinoid concentrations for three years in no-till corn-soybean rotations, planted with or without neonicotinoid seed coatings, and with or without small grain cover crops. Although neonicotinoids were detected in cover crops, high early season dissipation provided little opportunity for winter-planted cover crops to absorb significant neonicotinoid residues; small grain cover crops failed to mitigated neonicotinoid contamination in either treated or untreated plots. As the majority of neonicotinoids from seed coatings dissipated shortly after planting, residues did not accumulate in soil, but persisted at concentrations below 5 ppb. Persistent residues could be attributed to historic neonicotinoid use and recent, nearby neonicotinoid use. Tracking neonicotinoid concentrations over time revealed a large amount of local interplot movement of neonicotinoids; in untreated plots, contamination was higher when plots were less isolated from treated plots.


Asunto(s)
Productos Agrícolas , Insecticidas , Insecticidas/análisis , Neonicotinoides , Semillas/química , Suelo
12.
Curr Opin Insect Sci ; 46: 50-56, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33667691

RESUMEN

During the Green Revolution, older classes of insecticides contributed to biodiversity loss by decreasing insect populations and bioaccumulating across food webs. Introduction of Integrated Pest Management (IPM) improved stewardship of insecticides and promised fewer non-target effects. IPM adoption has waned in recent decades, and popularity of newer classes of insecticides, like the neonicotinoids, has surged, posing new and unique threats to insect populations. In this review, we first address how older classes of insecticides can affect trophic interactions, and then consider the influence of neonicotinoids on food webs and the role they may be playing in insect declines. We conclude by discussing challenges posed by current use patterns of neonicotinoids and how their risk can be addressed.


Asunto(s)
Insecticidas , Animales , Cadena Alimentaria , Insectos , Neonicotinoides , Control de Plagas
13.
J Insect Physiol ; 130: 104210, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33610542

RESUMEN

Eurosta solidaginis males produce large amounts of putative sex pheromone compared to other insect species; however, neither the site of pheromone production nor the release mechanism has been characterized. We compared E. solidaginis males and females, focusing on sexually dimorphic structures that are known to be involved in pheromone production in other tephritid species. Morphological and chemical analyses indicated that the rectum and pleural epidermis are involved in male E. solidaginis pheromone production, storage, or emission. We detected large quantities of pheromone in the enlarged rectum, suggesting that it stores pheromone for subsequent release through the anus. However, pheromone might also discharge through the pleural cuticle with the involvement of unusual pleural attachments of the tergosternal muscles, which, when contracted in males, realign specialized cuticular surface elements and expose less-sclerotized areas of cuticle. In males, pheromone components were also detected in epidermal cells of the pleuron. These cells were 60-100 times larger in mature males than in females and, to our knowledge, are the largest animal epithelial cells ever recorded. Furthermore, because these large cells in males are multinucleated, we presume that they develop through somatic polyploidization by endomitosis. Consequently, the pheromone-associated multinuclear pleural epidermal cells of Eurosta solidaginis may provide an interesting new system for understanding polyploidization.


Asunto(s)
Células Epidérmicas/citología , Poliploidía , Atractivos Sexuales/biosíntesis , Tephritidae/fisiología , Animales , Femenino , Masculino , Tephritidae/citología
14.
Glob Chang Biol ; 27(6): 1250-1265, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33433964

RESUMEN

Wild bees, like many other taxa, are threatened by land-use and climate change, which, in turn, jeopardizes pollination of crops and wild plants. Understanding how land-use and climate factors interact is critical to predicting and managing pollinator populations and ensuring adequate pollination services, but most studies have evaluated either land-use or climate effects, not both. Furthermore, bee species are incredibly variable, spanning an array of behavioral, physiological, and life-history traits that can increase or decrease resilience to land-use or climate change. Thus, there are likely bee species that benefit, while others suffer, from changing climate and land use, but few studies have documented taxon-specific trends. To address these critical knowledge gaps, we analyzed a long-term dataset of wild bee occurrences from Maryland, Delaware, and Washington DC, USA, examining how different bee genera and functional groups respond to landscape composition, quality, and climate factors. Despite a large body of literature documenting land-use effects on wild bees, in this study, climate factors emerged as the main drivers of wild-bee abundance and richness. For wild-bee communities in spring and summer/fall, temperature and precipitation were more important predictors than landscape composition, landscape quality, or topography. However, relationships varied substantially between wild-bee genera and functional groups. In the Northeast USA, past trends and future predictions show a changing climate with warmer winters, more intense precipitation in winter and spring, and longer growing seasons with higher maximum temperatures. In almost all of our analyses, these conditions were associated with lower abundance of wild bees. Wild-bee richness results were more mixed, including neutral and positive relationships with predicted temperature and precipitation patterns. Thus, in this region and undoubtedly more broadly, changing climate poses a significant threat to wild-bee communities.


Asunto(s)
Productos Agrícolas , Polinización , Animales , Abejas , Maryland , Estaciones del Año , Temperatura
15.
J Environ Qual ; 50(2): 476-484, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33368300

RESUMEN

Increased use of neonicotinoid-coated crop seeds introduces greater amounts of insecticides into the environment, where they are vulnerable to transport. To understand the transport of neonicotinoids from agricultural fields, we planted maize (Zea mays L.) seeds coated with thiamethoxam in lysimeter plots in central Pennsylvania. Over the next year, we sampled water generated by rainfall and snowmelt and analyzed these samples with mass spectrometry for the neonicotinoids thiamethoxam and clothianidin (metabolite), which originated from the coated seeds. For surface and subsurface transport, thiamethoxam exhibited "first-flush" dynamics, with concentrations highest during the first events following planting and generally decreasing for the remainder of the study. The metabolite clothianidin, however, persisted throughout the study. The mass of thiamethoxam and clothianidin exported during the study period accounted for 1.09% of the mass applied, with more than 90% of the mass transported in subsurface flow and less than 10% in surface runoff. These results suggest that surface runoff, at least for our site, is a relatively small contributor to the overall fate and transport of these insecticides and that the delivery ratio (i.e., mass exported/mass applied) observed for these compounds is similar to those of other trace-level emerging contaminants known to negatively influence aquatic ecosystems.


Asunto(s)
Insecticidas , Contaminantes del Suelo , Ecosistema , Insecticidas/análisis , Neonicotinoides/análisis , Nitrocompuestos , Pennsylvania , Contaminantes del Suelo/análisis
16.
Environ Entomol ; 50(1): 46-57, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33210703

RESUMEN

Because it keeps land in production, conservation programs that focus on in-field habitat manipulations may help farmers better support predators than by building predator habitat around fields. We investigated two in-field habitat manipulations that benefit producers and soil quality: fertilizing with dry-stack cow manure and planting a wheat cover crop. We hypothesized that, compared with inorganic fertilizer and fallow plots, both treatments augment habitat and residue and support more small arthropods that can serve as alternative prey for larger predators. As a result, we expected manure and the cover crop to increase ground-active predators. In turn, these predators could provide biological control of pests. Each year in a 3-yr field experiment, we applied manure and in 2 yr planted a wheat cover crop. We found that both planting a cover crop and applying dry-stack manure increased the plant cover in May. In the last year, this translated to greater soil mite (Acari) density. At the end of the experiment, however, neither manure nor the wheat cover crop had increased residue on the soil surface. As a result, our treatments had inconsistent effects on predator activity-density, especially for carabids and spiders. We observed strong edge effects from neighboring grass alleys on carabid activity-density. Regardless of treatment, we observed high predation of sentinel prey. We conclude that even without cover crops or organic fertilizer, the stability of no-till maize and increased weeds in fallow treatments generate sufficient habitat complexity and alternative prey to support robust predator communities.


Asunto(s)
Conducta Predatoria , Zea mays , Ácaros y Garrapatas , Agricultura , Animales , Bovinos , Productos Agrícolas , Estiércol , Suelo , Triticum
17.
Front Plant Sci ; 11: 581816, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250909

RESUMEN

Herbivorous feeding inside plant tissues, or endophagy, is a common lifestyle across Insecta, and occurs in insect taxa that bore, roll, tie, mine, gall, or otherwise modify plant tissues so that the tissues surround the insects while they are feeding. Some researchers have developed hypotheses to explain the adaptive significance of certain endophytic lifestyles (e.g., miners or gallers), but we are unaware of previous efforts to broadly characterize the adaptive significance of endophagy more generally. To fill this knowledge gap, we characterized the limited set of evolutionary selection pressures that could have encouraged phytophagous insects to feed inside plants, and then consider how these factors align with evidence for endophagy in the evolutionary history of orders of herbivorous insects. Reviewing the occurrence of endophytic taxa of various feeding guilds reveals that the pattern of evolution of endophagy varies strongly among insect orders, in some cases being an ancestral trait (e.g., Coleoptera and Lepidoptera) while being more derived in others (e.g., Diptera). Despite the large diversity of endophagous lifestyles and evolutionary trajectories that have led to endophagy in insects, our consideration of selection pressures leads us to hypothesize that nutritionally based factors may have had a stronger influence on evolution of endophagy than other factors, but that competition, water conservation, and natural enemies may have played significant roles in the development of endophagy.

18.
Environ Entomol ; 49(6): 1316-1326, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-32990730

RESUMEN

The striped cucumber beetle, Acalymma vittatum (Fabricius), is an important pest of cucurbit production in the eastern United States, where most commercial producers rely on insecticides to control this pest species. Biological control provides an alternative to insecticide use, but for A. vittatum, top-down control has not been well developed. In the northeastern United States, two parasitoid species, Celatoria setosa (Coquillett) (Diptera: Tachinidae) and Centistes diabroticae (Gahan) (Hymenoptera: Braconidae) have been reported from A. vittatum, but their distribution is poorly known. To determine whether these parasitoid species are attacking A. vittatum in Pennsylvania and the amount of mortality they provide, we characterized the parasitoid dynamics in two distinct efforts. First, we reared parasitoids from beetles captured at two research farms. Second, we focused on one of these farms and dissected beetles to quantify both parasitoid and parasite species attacking A. vittatum. Both efforts confirmed Cl. setosa and Cn. diabroticae, and parasitism rates varied widely between locations and among years (4-60%). Unexpectedly, our dissections revealed that a potentially undescribed nematode species (Howardula sp.) as the most common parasite in the community. We also discovered gregarine protists. Despite being smaller than females, males were more commonly attacked by parasitic species, but we detected no relationship between the size of beetles and abundance of parasitic species in A. vittatum. This work provides a baseline understanding of the parasitoid and parasite community attacking A. vittatum and advances opportunities for conservation biological control using these natural-enemy species.


Asunto(s)
Escarabajos , Cucumis sativus , Insecticidas , Nematodos , Animales , Femenino , Masculino , Pennsylvania , Control Biológico de Vectores
19.
Environ Entomol ; 49(5): 1026-1031, 2020 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-32860402

RESUMEN

Halyomorpha halys (Stål), the brown marmorated stink bug, is an invasive and highly polyphagous insect that has caused serious economic injury to specialty and row crops in the United States and Europe. Here, we evaluated the effects of marking adult and nymphal H. halys with four different colors of fluorescent powder (Blaze Orange, Corona Pink, Horizon Blue, and Signal Green) on mobility and survivorship in laboratory bioassays. Adults and nymphs were marked using liquified fluorescent powder solutions and allowed to dry prior to bioassay. The presence of the marking solution had no significant effects on adult or nymphal mobility, adult survivorship, nymphal development, or adult flight capacity. We also evaluated the persistence of neon marker applied to the pronotum of H. halys adults and found this technique remained detectable for 2 wk under field conditions. Although both marking techniques are inexpensive, persist for ≥1 wk, and do not affect mortality, the neon marker method is more time-consuming, taking ~12 times longer to mark 50 adult H. halys compared with the liquified fluorescent powders. Thus, we would recommend using fluorescent powders for large-scale mark-release-recapture studies.


Asunto(s)
Heterópteros , Supervivencia , Adulto , Animales , Productos Agrícolas , Europa (Continente) , Ninfa , Estados Unidos
20.
Sci Data ; 7(1): 240, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32686678

RESUMEN

With documented global declines in insects, including wild bees, there has been increasing interest in developing and expanding insect monitoring programs. Our objective here was to organize, validate, and share an analysis-ready version of one of the few existing long-term monitoring datasets for wild bees in the United States. Since 1999, the Native Bee Inventory and Monitoring Lab (BIML) of the United States Geological Survey has sampled wild-bee communities in the Mid-Atlantic U.S., but samples were collected in multiple studies and the datasets are not fully integrated. Furthermore, critical information about sampling methodology was often lacking, though these factors can significantly influence collection outcomes and must be considered in analyses. We cleaned and verified BIML data from Maryland, Delaware, and Washington DC, USA, and generated sampling methodology for over 84% of the 99,053 pan-trapped occurrences in this region. We enthusiastically invite creative analyses of this rich dataset to advance understanding of the biology and ecology of wild bees, inform conservation efforts, and perhaps help design a nationwide bee monitoring program.


Asunto(s)
Distribución Animal , Abejas , Animales , Delaware , District of Columbia , Maryland
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...