Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Enzymol ; 587: 21-42, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28253957

RESUMEN

Autophagy relies on the sequential, hierarchical association of proteins with phagophores, and forming autophagosomes to allow completion of the process. Additionally, the trafficking of the unique transmembrane autophagy-related protein ATG9 is vital for autophagy progression. In this chapter, we discuss methods to monitor autophagosome number using confocal microscopy, by following the association of different autophagosomal markers with the phagophore and completed autophagosome. We also discuss methods to monitor the trafficking of ATG9 in mammalian cells under starvation conditions.


Asunto(s)
Autofagosomas/ultraestructura , Microscopía Confocal/métodos , Animales , Proteínas Relacionadas con la Autofagia/análisis , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta/métodos , Células HEK293 , Humanos , Mamíferos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Imagen Molecular/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Transporte Vesicular/análisis , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Methods Enzymol ; 588: 79-108, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28237120

RESUMEN

The ability to efficiently modulate autophagy activity is paramount in the study of the field. Conventional broad-range autophagy inhibitors and genetic manipulation using RNA interference (RNAi), although widely used in autophagy research, are often limited in specificity or efficacy. In this chapter, we address the problems of conventional autophagy-modulating tools by exploring the use of three different CRISPR/Cas9 systems to abrogate autophagy in numerous human and mouse cell lines. The first system generates cell lines constitutively deleted of ATG5 or ATG7 whereas the second and third systems express a Tet-On inducible-Cas9 that enables regulated deletion of ATG5 or ATG7. We observed the efficiency of autophagy inhibition using the CRISPR/Cas9 strategy to surpass that of RNAi, and successfully generated cells with complete and sustained autophagy disruption through the CRISPR/Cas9 technology.


Asunto(s)
Autofagia , Sistemas CRISPR-Cas , Edición Génica/métodos , Animales , Proteína 5 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Línea Celular , Clonación Molecular/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Ratones , ARN Guía de Kinetoplastida/genética
3.
Mol Biol Cell ; 23(10): 1860-73, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22456507

RESUMEN

Autophagy is a catabolic process essential for cell homeostasis, at the core of which is the formation of double-membrane organelles called autophagosomes. Atg9 is the only known transmembrane protein required for autophagy and is proposed to deliver membrane to the preautophagosome structures and autophagosomes. We show here that mammalian Atg9 (mAtg9) is required for the formation of DFCP1-positive autophagosome precursors called phagophores. mAtg9 is recruited to phagophores independent of early autophagy proteins, such as ULK1 and WIPI2, but does not become a stable component of the autophagosome membrane. In fact, mAtg9-positive structures interact dynamically with phagophores and autophagosomes without being incorporated into them. The membrane compartment enriched in mAtg9 displays a unique sedimentation profile, which is unaltered upon starvation-induced autophagy. Correlative light electron microscopy reveals that mAtg9 is present on tubular-vesicular membranes emanating from vacuolar structures. We show that mAtg9 resides in a unique endosomal-like compartment and on endosomes, including recycling endosomes, where it interacts with the transferrin receptor. We propose that mAtg9 trafficking through multiple organelles, including recycling endosomes, is essential for the initiation and progression of autophagy; however, rather than acting as a structural component of the autophagosome, it is required for the expansion of the autophagosome precursor.


Asunto(s)
Autofagia , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Fagosomas/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Biomarcadores/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/ultraestructura , Proteínas de Unión a Fosfato , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Interferencia de ARN , Receptores de Transferrina/metabolismo , Proteínas de Transporte Vesicular
4.
Cell Death Differ ; 16(7): 956-65, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19373247

RESUMEN

The source of the autophagosome membrane, and the formation of the autophagosome remain the most important questions for understanding autophagy. Fundamentally, the process of autophagosome formation is similar between yeast and mammalian cells and many of the proteins involved (called the autophagy-related (Atg) proteins) are known, having been first discovered in yeast. However, both in yeast and mammalian cells, the molecular details are missing to explain how the double-membrane autophagosome is formed. Important advances in our understanding of the formation process have recently been obtained, and here, we review and interpret these data in the context of well-known paradigms of membrane trafficking to develop some hypothetical models for how an autophagosome forms in mammalian cells.


Asunto(s)
Autofagia/fisiología , Fagosomas/fisiología , Vesículas Transportadoras/fisiología , Animales , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas SNARE/metabolismo , Transducción de Señal/fisiología , Ubiquitina/metabolismo , Proteínas de Unión al GTP rab/metabolismo
6.
Mol Biol Cell ; 12(6): 1699-709, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11408578

RESUMEN

Homotypic fusion of immature secretory granules (ISGs) gives rise to mature secretory granules (MSGs), the storage compartment in endocrine and neuroendocrine cells for hormones and neuropeptides. With the use of a cell-free fusion assay, we investigated which soluble N-ethylmaleimide-sensitive fusion protein attachment receptor (SNARE) molecules are involved in the homotypic fusion of ISGs. Interestingly, the SNARE molecules mediating the exocytosis of MSGs in neuroendocrine cells, syntaxin 1, SNAP-25, and VAMP2, were not involved in homotypic ISG fusion. Instead, we have identified syntaxin 6 as a component of the core machinery responsible for homotypic ISG fusion. Subcellular fractionation studies and indirect immunofluorescence microscopy show that syntaxin 6 is sorted away during the maturation of ISGs to MSGs. Although, syntaxin 6 on ISG membranes is associated with SNAP-25 and SNAP-29/GS32, we could not find evidence that these target (t)-SNARE molecules are involved in homotypic ISG fusion. Nor could we find any involvement for the vesicle (v)-SNARE VAMP4, which is known to be associated with syntaxin 6. Importantly, we have shown that homotypic fusion requires the function of syntaxin 6 on both donor as well as acceptor membranes, which suggests that t-t-SNARE interactions, either direct or indirect, may be required during fusion of ISG membranes.


Asunto(s)
Proteínas de la Membrana/fisiología , Vesículas Secretoras/metabolismo , Proteínas de Transporte Vesicular , Animales , Antígenos de Superficie/metabolismo , Membrana Celular/metabolismo , Sistema Libre de Células , Cromatografía en Gel , Relación Dosis-Respuesta a Droga , Sistema Endocrino/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Células PC12 , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Qa-SNARE , Proteínas R-SNARE , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas SNARE , Fracciones Subcelulares , Proteína 25 Asociada a Sinaptosomas , Sintaxina 1
7.
EMBO J ; 20(9): 2191-201, 2001 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11331585

RESUMEN

PACS-1 is a cytosolic protein involved in controlling the correct subcellular localization of integral membrane proteins that contain acidic cluster sorting motifs, such as furin and human immunodeficiency virus type 1 (HIV-1) NEF: We have now investigated the interaction of PACS-1 with heterotetrameric adaptor complexes. PACS-1 associates with both AP-1 and AP-3, but not AP-2, and forms a ternary complex between furin and AP-1. A short sequence within PACS-1 that is essential for binding to AP-1 has been identified. Mutation of this motif yielded a dominant-negative PACS-1 molecule that can still bind to acidic cluster motifs on cargo proteins but not to adaptor complexes. Expression of dominant-negative PACS-1 causes a mislocalization of both furin and mannose 6-phosphate receptor from the trans-Golgi network, but has no effect on the localization of proteins that do not contain acidic cluster sorting motifs. Furthermore, expression of dominant-negative PACS-1 inhibits the ability of HIV-1 Nef to downregulate MHC-I. These studies demonstrate the requirement for PACS-1 interactions with adaptor proteins in multiple processes, including secretory granule biogenesis and HIV-1 pathogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ensamble de Clatrina Monoméricas , Complejo 3 de Proteína Adaptadora , Subunidades alfa de Complejo de Proteína Adaptadora , Subunidades delta de Complexo de Proteína Adaptadora , Proteínas Adaptadoras del Transporte Vesicular , Secuencias de Aminoácidos/fisiología , Proteínas Portadoras/genética , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Furina , Expresión Génica , Productos del Gen nef/antagonistas & inhibidores , Productos del Gen nef/metabolismo , Genes Dominantes , Glutatión Transferasa/genética , Humanos , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , Receptor IGF Tipo 2 , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Subtilisinas/metabolismo , Factores de Transcripción/metabolismo , Transfección , Proteínas de Transporte Vesicular , Red trans-Golgi/metabolismo
8.
Trends Cell Biol ; 11(3): 116-22, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11306272

RESUMEN

Regulated secretion of hormones occurs when a cell receives an external stimulus, triggering the secretory granules to undergo fusion with the plasma membrane and release their content into the extracellular milieu. The formation of a mature secretory granule (MSG) involves a series of discrete and unique events such as protein sorting, formation of immature secretory granules (ISGs), prohormone processing and vesicle fusion. Regulated secretory proteins (RSPs), the proteins stored and secreted from MSGs, contain signals or domains to direct them into the regulated secretory pathway. Recent data on the role of specific domains in RSPs involved in sorting and aggregation suggest that the cell-type-specific composition of RSPs in the trans-Golgi network (TGN) has an important role in determining how the RSPs get into ISGs. The realization that lipid rafts are implicated in sorting RSPs in the TGN and the identification of SNARE molecules represent further major advances in our understanding of how MSGs are formed. At the heart of these findings is the elucidation of molecular mechanisms driving protein--lipid and protein--protein interactions specific for secretory granule biogenesis.


Asunto(s)
Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Vesículas Secretoras/metabolismo , Proteínas de Transporte Vesicular , Red trans-Golgi/metabolismo , Membrana Celular/metabolismo , Cromograninas/química , Cromograninas/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Furina , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/aislamiento & purificación , Biogénesis de Organelos , Unión Proteica/fisiología , Señales de Clasificación de Proteína/fisiología , Proteínas/química , Proteínas/metabolismo , Proteínas SNARE , Subtilisinas/metabolismo
9.
Curr Protoc Cell Biol ; Chapter 7: Unit 7.3, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-18228381

RESUMEN

Post-translational modifications of proteins make it possible to determine where a protein normally resides or to follow its transport through the cell. One such modification is addition of sulfate either to tyrosine residues or to carbohydrate side chains. Labeling studies with [(35)S] sulfate can be done as continuous or pulse-chase experiments, as described here.


Asunto(s)
Marcaje Isotópico/métodos , Proteínas/análisis , Radioisótopos de Azufre/análisis , Animales , Células Cultivadas/metabolismo , Humanos , Indicadores y Reactivos , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Tirosina/análogos & derivados , Tirosina/análisis
10.
Semin Cell Dev Biol ; 11(4): 243-51, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10966858

RESUMEN

Proinsulin is packaged into nascent (immature, clathrin-coated) secretory granules in the trans-Golgi network (TGN) of the beta -cell along with other granular constituents including the proinsulin conversion enzymes. It is assumed that such packaging is dependent on an active sorting process, separating granular proteins from other secretory or membrane proteins, but the mechanism remains elusive. As granules mature, the clathrin coat is lost, the intragranular milieu is progressively acidified, and proinsulin is converted to insulin and C-peptide. Loss of clathrin is believed to arise by budding of clathrin-coated vesicles from maturing granules, carrying with them any inappropriate or unnecessary products and providing an additional means for refinement of granular content.


Asunto(s)
Islotes Pancreáticos/metabolismo , Vesículas Secretoras/metabolismo , Animales , Transporte Biológico Activo , Clatrina/metabolismo , Aparato de Golgi/metabolismo , Humanos , Insulina/biosíntesis , Islotes Pancreáticos/ultraestructura , Lípidos de la Membrana/metabolismo , Proinsulina/metabolismo
11.
Eur J Biochem ; 267(17): 5646-54, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10951226

RESUMEN

Vacuolar H+-ATPases (V-ATPases) are multisubunit enzymes that acidify various intracellular organelles, including secretory pathway compartments. We have examined the effects of the specific V-ATPase inhibitor bafilomycin A1 (Baf) on the intracellular transport, sorting, processing and release of a number of neuroendocrine secretory proteins in primary Xenopus intermediate pituitary cells. Ultrastructural examination of Baf-treated intermediate pituitary cells revealed a reduction in the amount of small dense-core secretory granules and the appearance of vacuolar structures in the trans-Golgi area. Pulse-chase incubations in combination with immunoprecipitation analysis showed that in treated cells, the proteolytic processing of the newly synthesized prohormone proopiomelanocortin, prohormone convertase PC2 and secretogranin III (SgIII) was inhibited, and an intracellular accumulation of intact precursor forms and intermediate cleavage products became apparent. Moreover, we found that treated cells secreted considerable amounts of a PC2 processing intermediate and unprocessed SgIII in a constitutive fashion. Collectively, these data indicate that in the secretory pathway, V-ATPases play an important role in creating the microenvironment that is essential for proper transport, sorting, processing and release of regulated secretory proteins.


Asunto(s)
Endocitosis , Macrólidos , Proteínas/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares , Animales , Antibacterianos/metabolismo , Compartimento Celular , Aparato de Golgi/metabolismo , Hidrólisis , Hipófisis/citología , Hipófisis/enzimología , Hipófisis/metabolismo , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Xenopus laevis
12.
J Biol Chem ; 275(29): 21862-9, 2000 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-10807927

RESUMEN

ADP-ribosylation factor 1 (ARF1) mediates clathrin coat formation on PC12 immature secretory granules (ISGs). We have used two approaches to investigate whether ARF1 interacts directly with the clathrin adaptor protein, AP-1. Using an in vitro recruitment assay and co-immunoprecipitation, we could isolate an AP-1.ARF1 complex. Then we used a site-directed photocross-linking approach to determine the components that act downstream of ARF1 in clathrin coat formation on ISGs. Myristoylated ARF1, with a photolabile phenylalanine analogue incorporated into its putative effector domain (switch 1), showed a specific, GTP-dependent interaction with both the gamma- and beta-adaptin subunits of AP-1 on ISGs. These experiments provide evidence for a direct interaction of ARF1 with AP-1. On mature secretory granules myristoylated ARF1 does not bind, and hence clathrin coat formation cannot be initiated, supporting the hypothesis that molecules involved in coat recruitment are removed during ISG maturation.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Gránulos Citoplasmáticos/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de la Membrana/metabolismo , Subunidades alfa de Complejo de Proteína Adaptadora , Proteínas Adaptadoras del Transporte Vesicular , Animales , Clatrina/metabolismo , Células PC12 , Ratas
13.
J Cell Sci ; 112 ( Pt 22): 3955-66, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10547356

RESUMEN

In neuroendocrine cells sorting of proteins from immature secretory granules (ISGs) occurs during maturation and is achieved by clathrin-coated vesicles containing the adaptor protein (AP)-1. We have investigated the role of the mannose-6-phosphate receptors (M6PRs) in the recruitment of AP-1 to ISGs. M6PRs were detected in ISGs isolated from PC12 cells by subcellular fractionation, and by immuno-EM labelling on cryosections. In light of our previous results, where greater than 80% of the ISGs were found to contain furin, we examined the relationship between furin and M6PR on ISGs. By immunoisolation techniques we find that 50% at most of the ISGs contain the cation-independent (CI)-M6PR. Using sequential immunoisolation we could demonstrate that there are two populations of ISGs: those that have both M6PR and furin, and those which contain only furin. Furthermore, using immobilized GST-fusion proteins containing the cytoplasmic domain of the CI-M6PR we have shown binding of AP-1 requires casein kinase II phosphorylation of the CI-M6PR fusion protein, and in particular phosphorylation of Ser(2474). Addition of these phosphorylated GST-CI-M6PR fusion proteins to a cell-free assay reconstituting AP-1 binding to ISGs inhibits AP-1 recruitment to ISGs.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Receptor IGF Tipo 2/metabolismo , Subtilisinas/metabolismo , Células 3T3 , Subunidades alfa de Complejo de Proteína Adaptadora , Proteínas Adaptadoras del Transporte Vesicular , Animales , Unión Competitiva , Quinasa de la Caseína II , Bovinos , Gránulos Citoplasmáticos/ultraestructura , Endosomas/metabolismo , Furina , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Peroxidasa de Rábano Silvestre/farmacocinética , Humanos , Immunoblotting , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Células PC12 , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Receptor IGF Tipo 2/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Fracciones Subcelulares/química , Subtilisinas/genética
14.
J Cell Sci ; 112 ( Pt 22): 4089-100, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10547368

RESUMEN

Clathrin coated vesicles were isolated from lactating rabbit mammary gland by differential centrifugation, centrifugation on (2)H2O-sucrose cushions and Sephacryl S-1000 chromatography. Mammary epithelial cells contain an unexpectedly high quantity of clathrin coated vesicles which appear heterogeneous in size, with a mean diameter of 95.9+/-10.5 nm and a density of 1.23 g x ml(-1). Analysis of clathrin coated vesicle adaptor composition by SDS-PAGE and western blot showed that only approximately 5-10% of total APs consist of AP-2 in isolated mammary gland clathrin coated vesicles whereas it represents approximately 70% of the total APs from bovine brain clathrin coated vesicles. Cargo molecules known to be transcytosed such as IgG, IgA, and the pIgR were detected in the clathrin coated vesicles, indicating that part of this vesicle population is involved in transcytotic pathways. However, as the vast majority of the clathrin coated vesicles contained AP-1, it was likely that these clathrin coated vesicles were involved in the secretory pathway. Relatively high quantities of furin and cation-independent mannose 6-phosphate receptor were detected in mammary clathrin coated vesicles. By immuno electron microscopy, AP-1 and the cation-independent mannose 6-phosphate receptor were localized in Golgi-associated vesicles and on the membrane of secretory vesicles. The presence of AP-1 in the coat patches on the membrane of secretory vesicles containing casein micelles, and the presence of alpha(s1)-casein in mammary gland clathrin coated vesicles, support a role for AP-1 in the maturation of secretory vesicles. Our data pinpoint the importance of clathrin coated vesicles in lactating mammary epithelial cells, and suggest these vesicles are involved in the transcytotic pathway, in sorting at the trans-Golgi network and in the biogenesis of casein-containing secretory vesicles.


Asunto(s)
Clatrina/metabolismo , Vesículas Cubiertas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Lactancia , Glándulas Mamarias Animales/metabolismo , Subunidades alfa de Complejo de Proteína Adaptadora , Proteínas Adaptadoras del Transporte Vesicular , Animales , Transporte Biológico , Encéfalo/metabolismo , Bovinos , Clatrina/análisis , Vesículas Cubiertas/química , Vesículas Cubiertas/ultraestructura , Electroforesis en Gel de Agar , Electroforesis en Gel de Poliacrilamida , Células Epiteliales/química , Células Epiteliales/ultraestructura , Femenino , Inmunohistoquímica , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/análisis , Microscopía Inmunoelectrónica , Conejos , Receptor IGF Tipo 2/metabolismo , Ultracentrifugación
15.
J Cell Biol ; 143(7): 1831-44, 1998 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-9864358

RESUMEN

The biogenesis of secretory granules embodies several morphological and biochemical changes. In particular, in neuroendocrine cells maturation of secretory granules is characterized by an increase in size which has been proposed to reflect homotypic fusion of immature secretory granules (ISGs). Here we describe an assay that provides the first biochemical evidence for such a fusion event and allows us to analyze its regulation. The assay reconstitutes homotypic fusion between one population of ISGs containing a [35S]sulfate-labeled substrate, secretogranin II (SgII), and a second population containing the prohormone convertase PC2. Both substrate and enzyme are targeted exclusively to ISGs. Fusion is measured by quantification of a cleavage product of SgII produced by PC2. With this assay we show that fusion only occurs between ISGs and not between ISGs and MSGs, is temperature dependent, and requires ATP and GTP and cytosolic proteins. NSF (N-ethylmaleimide-sensitive fusion protein) is amongst the cytosolic proteins required, whereas we could not detect a requirement for p97. The ability to reconstitute ISG fusion in a cell-free assay is an important advance towards the identification of molecules involved in the maturation of secretory granules and will increase our understanding of this process.


Asunto(s)
Gránulos Citoplasmáticos/fisiología , Exocitosis/fisiología , Proteínas de Transporte Vesicular , Adenosina Trifosfato/fisiología , Animales , Proteínas Portadoras/fisiología , Sistema Libre de Células , Cromograninas , Gránulos Citoplasmáticos/ultraestructura , Citosol/metabolismo , Femenino , Furina , Guanosina Trifosfato/fisiología , Masculino , Fusión de Membrana , Proteínas Sensibles a N-Etilmaleimida , Células PC12 , Proteínas/análisis , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Subtilisinas/análisis
16.
Biochim Biophys Acta ; 1404(1-2): 231-44, 1998 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-9714820

RESUMEN

Secretory granule formation requires selection of soluble and membrane proteins into nascent secretory granules, and exclusion of proteins not required for the function of secretory granules. Both selection and exclusion presumably can occur in the compartment where assembly of the secretory granule begins, the trans most cisternae of the Golgi complex. Current research focused on the initial stages of secretory granule formation includes a search for the 'signals' which may mediate active sorting of components into secretory granules, and the role of aggregation of regulated secretory proteins in sorting. In addition, the temporal sequence of the sorting events in the Golgi, and post-Golgi compartments has gained much attention, as summarized by the alternative but not mutually exclusive 'sorting for entry' vs. 'sorting by retention' models. 'Sorting for entry' which encompasses the most popular models requires selection of cargo and membrane and exclusion of non-secretory granule proteins in the TGN prior to secretory granule formation. 'Sorting by retention' stipulates that protein selection or exclusion may occur after secretory granule formation: secretory granule specific components are retained during maturation of the granule while non-secretory granule molecules are removed in vesicles which bud from maturing secretory granules. Finally, some progress has been made in the identification of cytosolic components involved in the budding of nascent secretory granules from the TGN. This review will focus on the recent data concerning the events in secretory granule formation which occur, in the trans-Golgi network.


Asunto(s)
Gránulos Citoplasmáticos/fisiología , Sistema Endocrino/citología , Aparato de Golgi/fisiología , Sistemas Neurosecretores/citología , Animales , Gránulos Citoplasmáticos/metabolismo , Aparato de Golgi/metabolismo , Humanos , Solubilidad
18.
J Neurochem ; 70(1): 374-83, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9422384

RESUMEN

Two experimental approaches were used to study the processing of chromogranin B and secretogranin II by prohormone convertases. In GH3 cells various prohormone convertases were overexpressed together with the substrate chromogranin B by use of a vaccinia virus infection system. PC1 appeared to be by far the most active enzyme and converted chromogranin B to several smaller molecules, including the peptide PE-11. In brain this peptide is cleaved physiologically from chromogranin B. Some processing of chromogranin B and formation of free PE-11 were also observed with PC2 and PACE4. Furin produced larger fragments, whereas PC5-A and PC5-B had negligible effects. As a second model, PC12 cells were stably transfected with PC1 or PC2 to investigate the processing of endogenous chromogranins. Both enzymes effectively cleaved chromogranin B and secretogranin II, liberating the peptides PE-11 and secretoneurin, respectively. However, in transfection experiments the ability to generate the free peptides was more pronounced with PC2 than with PC1. The extent of proprotein processing achieved by prohormone convertases apparently differed depending on the experimental system applied. This suggests that in vivo mechanisms to support and fine-tune the activity of the processing enzymes exist, which might be overlooked by using only one methodological approach.


Asunto(s)
Cromograninas/metabolismo , Péptido Hidrolasas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas/metabolismo , Subtilisinas/metabolismo , Animales , Cromogranina B , Furina , Ratones , Células PC12/virología , Fragmentos de Péptidos/metabolismo , Ratas , Transfección , Células Tumorales Cultivadas/virología , Vaccinia/metabolismo
20.
EMBO J ; 16(16): 4859-70, 1997 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-9305628

RESUMEN

The composition of secretory granules in neuroendocrine and endocrine cells is determined by two sorting events; the first in the trans-Golgi complex (TGN), the second in the immature secretory granule (ISG). Sorting from the ISG, which may be mediated by the AP-1 type adaptor complex and clathrin-coated vesicles, occurs during ISG maturation. Here we show that furin, a ubiquitously expressed, TGN/endosomal membrane endoprotease, is present in the regulated pathway of neuroendocrine cells where it is found in ISGs. By contrast, TGN38, a membrane protein that is also routed through the TGN/endosomal system does not enter ISGs. Furin, however, is excluded from mature secretory granules, suggesting that the endoprotease is retrieved from the clathrin-coated ISGs. Consistent with this, we show that the furin cytoplasmic domain interacts with AP-1, a component of the TGN/ISG-localized clathrin sorting machinery. Interaction between AP-1 and furin is dependent on phosphorylation of the enzyme's cytoplasmic domain by casein kinase II. Finally, in support of a requirement for the phosphorylation-dependent association of furin with AP-1, expression of furin mutants that mimic either the phosphorylated or unphosphorylated forms of the endoprotease in AtT-20 cells demonstrates that the integrity of the CKII sites is necessary for removal of furin from the regulated pathway.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Glicoproteínas , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Subtilisinas/metabolismo , Subunidades alfa de Complejo de Proteína Adaptadora , Proteínas Adaptadoras del Transporte Vesicular , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/farmacología , Animales , Unión Competitiva , Quinasa de la Caseína II , Línea Celular , Centrifugación por Gradiente de Densidad , Clatrina/metabolismo , Clonación Molecular , Técnica del Anticuerpo Fluorescente , Furina , Aparato de Golgi/metabolismo , Immunoblotting , Glicoproteínas de Membrana/metabolismo , Células PC12 , Fosforilación , Pruebas de Precipitina , Ratas , Proteínas Recombinantes de Fusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...