Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4836, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844460

RESUMEN

Relaxation dynamics of complex many-body quantum systems trapped into metastable states is a very active field of research from both the theoretical and experimental point of view with implications in a wide array of topics from macroscopic quantum tunnelling and nucleosynthesis to non-equilibrium superconductivity and energy-efficient memory devices. In this work, we investigate quantum domain reconfiguration dynamics in the electronic superlattice of a quantum material using time-resolved scanning tunneling microscopy and unveil a crossover from temperature to noisy quantum fluctuation dominated dynamics. The process is modeled using a programmable superconducting quantum annealer in which qubit interconnections correspond directly to the microscopic interactions between electrons in the quantum material. Crucially, the dynamics of both the experiment and quantum simulation is driven by spectrally similar pink noise. We find that the simulations reproduce the emergent time evolution and temperature dependence of the experimentally observed electronic domain dynamics.

2.
Nat Commun ; 14(1): 8214, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081821

RESUMEN

Metastability of many-body quantum states is rare and still poorly understood. An exceptional example is the low-temperature metallic state of the layered dichalcogenide 1T-TaS2 in which electronic order is frozen after external excitation. Here we visualize the microscopic dynamics of injected charges in the metastable state using a multiple-tip scanning tunnelling microscope. We observe non-thermal formation of a metastable network of dislocations interconnected by domain walls, that leads to macroscopic robustness of the state to external thermal perturbations, such as small applied currents. With higher currents, we observe annihilation of dislocations following topological rules, accompanied with a change of macroscopic electrical resistance. Modelling carrier injection into a Wigner crystal reveals the origin of formation of fractionalized, topologically entangled networks, which defines the spatial fabric through which single particle excitations propagate. The possibility of manipulating topological entanglement of such networks suggests the way forward in the search for elusive metastable states in quantum many body systems.

4.
Opt Express ; 30(26): 46693-46709, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558615

RESUMEN

In silicon and other photonic integrated circuit platforms many devices exhibit a large polarization dependency, therefore a polarization beam splitter (PBS) is an essential building block to split optical signal to transversal electric (TE) and transversal magnetic (TM) modes. In this paper we propose a concept of integrated silicon-based PBS exploiting unique properties of all dielectric metamaterial cladding to achieve a high extinction ratio (ER) and wide bandwidth (BW) polarization splitting characteristics. We start from a structure (PBS-1) based on a directional coupler with metamaterial cladding combined with a bent waveguide with metamaterial cladding at the outer side in the role of a TE polarizer at the Thru port of the device. To increase BW we propose the improved concept (PBS-2) - a metamaterial compact dual Mach-Zehnder Interferometer structure in combination with the TE polarizer. Numerical simulations reveal that an exceptionally high ER over 35 dB can be achieved in a BW of 263 nm with insertion loss (IL) below 1 dB in case of PBS-2. The designed device has a footprint of 82 µm. Measurement results reveal that an ER > 30 dB is achievable in a BW of at least 140 nm (limited by the laser tuning range).

5.
Opt Express ; 29(15): 23701-23716, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614630

RESUMEN

Hierarchical textures (combining 2D periodic large and small micro textures) as an external outcoupling solution for OLEDs have been researched, both experimentally and by optical simulations. For the case of a red bottom emitting OLED, different hierarchical textures were fabricated using laser-based methods and a replication step and applied to the OLED substrate, resulting in an increased light outcoupling. Laboratory-size OLED devices with applied textured foils show a smaller increase in efficiency compared to the final large area devices. The results show that the full exploitation of textured foils in laboratory-size samples is mainly limited by the lateral size of the thin film stack area and by limited light collection area of the measuring equipment. Modeling and simulations are used to further evaluate the full prospective of hierarchical textures in large area OLED devices. Optimization of hierarchical textures is done by simultaneously changing the aspect ratios of the small and large textures and a potential of 57% improvement in EQE compared to devices without applied textures is predicted by simulations. Optimized hierarchical textures show similar outcoupling efficiencies compared to optimized single textures, while on the other hand hierarchical textures require less pronounced features, lower aspect ratios, compared to single textures to achieve the same efficiencies. Hierarchical textures also help in eliminating flat parts that limit outcoupling efficiency. Finally, the limiting factors that prevent higher outcoupling are addressed. We show that the dominant factor is non-ideal reflection from the organic thin film stack due to parasitic absorption. In addition, possible ways to further increase the outcoupling from a thick substrate are indicated.

6.
Science ; 370(6522): 1300-1309, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33303611

RESUMEN

Tandem solar cells that pair silicon with a metal halide perovskite are a promising option for surpassing the single-cell efficiency limit. We report a monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15%. The perovskite absorber, with a bandgap of 1.68 electron volts, remained phase-stable under illumination through a combination of fast hole extraction and minimized nonradiative recombination at the hole-selective interface. These features were made possible by a self-assembled, methyl-substituted carbazole monolayer as the hole-selective layer in the perovskite cell. The accelerated hole extraction was linked to a low ideality factor of 1.26 and single-junction fill factors of up to 84%, while enabling a tandem open-circuit voltage of as high as 1.92 volts. In air, without encapsulation, a tandem retained 95% of its initial efficiency after 300 hours of operation.

7.
Opt Express ; 27(20): A1554-A1568, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684506

RESUMEN

For advanced optical analysis and optimization of solar cell structures with multi-scale interface textures, we applied a coupled modelling approach (CMA), where we couple the rigorous coupled wave analysis method with ray tracing and transfer matrix method. Coupling of the methods enables accurate optical analysis of solar cells made of thin coherent and thick incoherent layers and includes combinations of nano- and micro-scale textures at various positions in the structure. The approach is experimentally validated on standalone single- and both-side textured crystalline silicon wafers, as well as on complete silicon heterojunction (Si HJ) solar cell structures. Using CMA, fully encapsulated bifacial Si HJ solar cells are optically simulated first by applying single- and both-side illumination, and the effects of introducing nano inverted pyramids and random micro-pyramids at front and/or rear interfaces are analyzed. Secondly, an external light management foil with a three-sided pyramidal micro-texture is applied in simulations to the front and/or rear encapsulation glass, and the related improvements are quantified. For the optimal combination of internal textures in the analyzed structure (random micro-pyramids at the front and nano inverted pyramids at the back) and the use of the light management foil on both sides of the device, a 5.6% gain in the short-circuit current is predicted, compared to the reference case with no light management foil and with random micro-pyramids applied to the front and rear internal interfaces.

9.
Beilstein J Nanotechnol ; 9: 2315-2329, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202700

RESUMEN

A variety of light management structures have been introduced in solar cells to improve light harvesting and further boost their conversion efficiency. Reliable and accurate simulation tools are required to design and optimize the individual structures and complete devices. In the first part of this paper, we analyze the performance of rigorous coupled-wave analysis (RCWA) for accurate three-dimensional optical simulation of solar cells, in particular heterojunction silicon (HJ Si) solar cells. The structure of HJ Si solar cells consists of thin and thick layers, and additionally, micro- and nano-textures are also introduced to further exploit the potential of light trapping. The RCWA was tested on the front substructure of the solar cell, including the texture, thin passivation and contact layers. Inverted pyramidal textures of different sizes were included in the simulations. The simulations rapidly converge as long as the textures are small (in the (sub)micrometer range), while for larger microscale textures (feature sizes of a few micrometers), this is not the case. Small textures were optimized to decrease the reflectance, and consequently, increase the absorption in the active layers of the solar cell. Decreasing the flat parts of the texture was shown to improve performance. For simulations of structures with microtextures, and for simulations of complete HJ Si cells, we propose a coupled modeling approach (CMA), where the RCWA is coupled with raytracing and the transfer matrix method. By means of CMA and nanotexture optimization, we show the possible benefits of nanotextures at the front interface of HJ Si solar cells, demonstrating a 13.4% improvement in the short-circuit current density with respect to the flat cell and 1.4% with respect to the cell with double-sided random micropyramids. We additionally demonstrate the ability to simulate a combination of nano- and microtextures at a single interface, although the considered structure did not show an improvement over the pyramidal textures.

10.
Sci Rep ; 7(1): 873, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28408763

RESUMEN

Liquid phase crystallized silicon on glass with a thickness of (10-40) µm has the potential to reduce material costs and the environmental impact of crystalline silicon solar cells. Recently, wafer quality open circuit voltages of over 650 mV and remarkable photocurrent densities of over 30 mA/cm2 have been demonstrated on this material, however, a low fill factor was limiting the performance. In this work we present our latest cell progress on 13 µm thin poly-crystalline silicon fabricated by the liquid phase crystallization directly on glass. The contact system uses passivated back-side silicon hetero-junctions, back-side KOH texture for light-trapping and interdigitated ITO/Ag contacts. The fill factors are up to 74% and efficiencies are 13.2% under AM1.5 g for two different doping densities of 1 · 1017/cm3 and 2 · 1016/cm3. The former is limited by bulk and interface recombination, leading to a reduced saturation current density, the latter by series resistance causing a lower fill factor. Both are additionally limited by electrical shading and losses at grain boundaries and dislocations. A small 1 × 0.1 cm2 test structure circumvents limitations of the contact design reaching an efficiency of 15.9% clearly showing the potential of the technology.

11.
Opt Express ; 25(4): A176-A190, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241559

RESUMEN

We present detailed numerical and experimental investigation of thin-film organic solar cells with a micro-textured light management foil applied on top of the front glass substrate. We first demonstrate that measurements of small-area laboratory solar cells are susceptible to a significant amount of optical losses that could lead to false interpretation of the measurement results. Using the combined optical model CROWM calibrated with realistic optical properties of organic films and other layers, we identify the origins of these losses and quantify the extent of their influence. Further on, we identify the most important light management mechanisms of the micro-textured foil, among which the prevention of light escaping at the front side of the cell is revealed as the dominant one. Detailed three-dimensional simulations show that the light-management foil applied on top of a large-area organic solar cell can reduce the total reflection losses by nearly 60% and improve the short-circuit current density by almost 20%. Finally, by assuming realistic open-circuit voltage and especially the realistic fill factor that deteriorates as the absorber layer thickness is increased, we determine the optimal absorber layer thickness that would result in the highest power conversion efficiency of the investigated organic solar cells.

12.
Opt Express ; 23(24): A1549-63, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26698803

RESUMEN

Finite element method is coupled with Huygens' expansion to determine light intensity distribution of scattered light in solar cells and other optoelectronic devices. The rigorous foundation of the modelling enables calculation of the light intensity distribution at a chosen distance and surface of observation in chosen material in reflection or in transmission for given wavelength of the incident light. The calculation of scattering or anti-reflection properties is not limited to a single textured interface, but can be done above more complex structures with several scattering interfaces or even with particles involved. Both scattering at periodic and at random textures can be efficiently handled with the modelling approach. A procedure for minimisation of the effect of small-area sample, which is considered in the finite element method calculation, is proposed and implemented into the modelling. Angular distribution function, total transmission and total reflection of the scattering interface or structure can be determined using the model. Furthermore, a method for calculation of the haze parameter of reflected or transmitted light is proposed. The modelling approach is applied to periodic and random nano-textured samples for photovoltaic applications, showing good agreement with measured data.

13.
Opt Express ; 23(15): A882-95, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367688

RESUMEN

We developed an optical model for simulation and optimization of luminescent down-shifting (LDS) layers for photovoltaics. These layers consist of micron-sized phosphor particles embedded in a polymer binder. The model is based on ray tracing and employs an effective approach to scattering and photoluminescence modelling. Experimental verification of the model shows that the model accurately takes all the structural parameters and material properties of the LDS layers into account, including the layer thickness, phosphor particle volume concentration, and phosphor particle size distribution. Finally, using the verified model, complete organic solar cells on glass substrate covered with the LDS layers are simulated. Simulations reveal that an optimized LDS layer can result in more than 6% larger short-circuit current of the solar cell.

14.
J Phys Chem Lett ; 6(1): 66-71, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-26263093

RESUMEN

The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi-Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells.

15.
Opt Express ; 23(7): A263-78, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968792

RESUMEN

In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH(3)NH(3)PbI(3)) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses.

16.
ACS Appl Mater Interfaces ; 6(24): 22061-8, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25418361

RESUMEN

Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth of hydrogenated nanocrystalline silicon (nc-Si:H). Our objective is to gain deeper insight in these correlations using the slope distribution, rms roughness (σ(rms)) and correlation length (lc) of textured substrates. A wide range of surface morphologies was obtained by Ar plasma treatment and wet etching of textured and flat-as-deposited ZnO substrates. The σ(rms), lc and slope distribution were deduced from AFM scans. Especially, the slope distribution of substrates was represented in an efficient way that light scattering and film growth direction can be more directly estimated at the same time. We observed that besides a high σ(rms), a high slope angle is beneficial to obtain high haze and scattering of light at larger angles, resulting in higher short-circuit current density of nc-Si:H solar cells. However, a high slope angle can also promote the creation of defective regions in nc-Si:H films grown on the substrate. It is also found that the crystalline fraction of nc-Si:H solar cells has a stronger correlation with the slope distributions than with σ(rms) of substrates. In this study, we successfully correlate all these observations with the solar-cell performance by using the slope distribution of substrates.

17.
Appl Opt ; 53(21): 4795-803, 2014 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-25090220

RESUMEN

We present a system for the measurement of the three-dimensional (3D) angular distribution function (ADF) of scattered or emitted light using a digital camera. The 3D ADF can be determined from the digital image captured from a reflective flat screen. With the developed camera-based system we can quantify the transmitted light scattered by textured samples or the light emitted from light sources in a few second's time. In the paper, the setup of the camera-based system is presented, the main transformations of the acquired digital image to obtain the 3D ADF are explained, and sensitivity issues are discussed. The system is applied to and validated on randomly nanotextured transparent samples and a calibrated light emitting device. Good matching is obtained with the measurements carried out with a conventional goniometric angular resolved scattering system.

18.
Phys Chem Chem Phys ; 16(25): 12940-8, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24849877

RESUMEN

The formation of iodine containing crystals with ageing in ionic liquid based dye-sensitized solar cells (DSSCs) containing an I3(-)/I(-) redox couple has already been confirmed. In this report we show how the size of these crystals can reversibly change during operation and the effects this has on cell performance. We also show how heat treatment and applied forward and reverse current treatment influence crystal growth in the cell. Crystal growth was tracked using electroluminescence and transmittance imaging, while current-voltage characterization and electrical impedance spectroscopy were used to measure cell performance and follow the changes in I3(-) diffusion, charge transfer resistance, and recombinations occurring in the DSSCs. Results reveal that applying a reverse current to the DSSC leads to the rapid formation of H2 bubbles while crystals grow rapidly when a forward current is applied. Additionally heat treatment at 80 °C can completely recover performance of a degraded cell showing visible defects and a large inhomogeneous active area.

19.
Acta Chim Slov ; 57(2): 405-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24061737

RESUMEN

A novel titanium dioxide paste based on Pechini sol-gel method and nanocrystalline TiO2 powder has been successfully developed and tested. The paste enables the formation of sponge like structure of the TiO2 layer i.e. highly porous and at the same time well connected TiO2 network. The layers have been used to assemble dye sensitized solar cells (DSSC) with two ruthenium complex based dyes, N719 and black dye, respectively. Overall conversion efficiencies of ionic liquid electrolyte based DSSC sensitized with N719 and black dye was 6.1% and 2.0%, respectively, when determined under standard test conditions (100 mW/cm2, AM1.5, 25 °C).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...