Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 85, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493086

RESUMEN

BACKGROUND: The abundance of glucuronoxylan (GX) in agricultural and forestry residual side streams positions it as a promising feedstock for microbial conversion into valuable compounds. By engineering strains of the widely employed cell factory Saccharomyces cerevisiae with the ability to directly hydrolyze and ferment GX polymers, we can avoid the need for harsh chemical pretreatments and costly enzymatic hydrolysis steps prior to fermentation. However, for an economically viable bioproduction process, the engineered strains must efficiently express and secrete enzymes that act in synergy to hydrolyze the targeted polymers. RESULTS: The aim of this study was to equip the xylose-fermenting S. cerevisiae strain CEN.PK XXX with xylanolytic enzymes targeting beechwood GX. Using a targeted enzyme approach, we matched hydrolytic enzyme activities to the chemical features of the GX substrate and determined that besides endo-1,4-ß-xylanase and ß-xylosidase activities, α-methyl-glucuronidase activity was of great importance for GX hydrolysis and yeast growth. We also created a library of strains expressing different combinations of enzymes, and screened for yeast strains that could express and secrete the enzymes and metabolize the GX hydrolysis products efficiently. While strains engineered with BmXyn11A xylanase and XylA ß-xylosidase could grow relatively well in beechwood GX, strains further engineered with Agu115 α-methyl-glucuronidase did not display an additional growth benefit, likely due to inefficient expression and secretion of this enzyme. Co-cultures of strains expressing complementary enzymes as well as external enzyme supplementation boosted yeast growth and ethanol fermentation of GX, and ethanol titers reached a maximum of 1.33 g L- 1 after 48 h under oxygen limited condition in bioreactor fermentations. CONCLUSION: This work underscored the importance of identifying an optimal enzyme combination for successful engineering of S. cerevisiae strains that can hydrolyze and assimilate GX. The enzymes must exhibit high and balanced activities, be compatible with the yeast's expression and secretion system, and the nature of the hydrolysis products must be such that they can be taken up and metabolized by the yeast. The engineered strains, particularly when co-cultivated, display robust growth and fermentation of GX, and represent a significant step forward towards a sustainable and cost-effective bioprocessing of GX-rich biomass. They also provide valuable insights for future strain and process development targets.


Asunto(s)
Edición Génica , Saccharomyces cerevisiae , Xilanos , Saccharomyces cerevisiae/metabolismo , Fermentación , Hidrólisis , Sistemas CRISPR-Cas , Etanol/metabolismo , Polímeros/metabolismo , Glucuronidasa , Xilosa/metabolismo
2.
Microb Cell Fact ; 23(1): 44, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336674

RESUMEN

BACKGROUND: Microorganisms must respond to changes in their environment. Analysing the robustness of functions (i.e. performance stability) to such dynamic perturbations is of great interest in both laboratory and industrial settings. Recently, a quantification method capable of assessing the robustness of various functions, such as specific growth rate or product yield, across different conditions, time frames, and populations has been developed for microorganisms grown in a 96-well plate. In micro-titer-plates, environmental change is slow and undefined. Dynamic microfluidic single-cell cultivation (dMSCC) enables the precise maintenance and manipulation of microenvironments, while tracking single cells over time using live-cell imaging. Here, we combined dMSCC and a robustness quantification method to a pipeline for assessing performance stability to changes occurring within seconds or minutes. RESULTS: Saccharomyces cerevisiae CEN.PK113-7D, harbouring a biosensor for intracellular ATP levels, was exposed to glucose feast-starvation cycles, with each condition lasting from 1.5 to 48 min over a 20 h period. A semi-automated image and data analysis pipeline was developed and applied to assess the performance and robustness of various functions at population, subpopulation, and single-cell resolution. We observed a decrease in specific growth rate but an increase in intracellular ATP levels with longer oscillation intervals. Cells subjected to 48 min oscillations exhibited the highest average ATP content, but the lowest stability over time and the highest heterogeneity within the population. CONCLUSION: The proposed pipeline enabled the investigation of function stability in dynamic environments, both over time and within populations. The strategy allows for parallelisation and automation, and is easily adaptable to new organisms, biosensors, cultivation conditions, and oscillation frequencies. Insights on the microbial response to changing environments will guide strain development and bioprocess optimisation.


Asunto(s)
Microfluídica , Saccharomyces cerevisiae , Adenosina Trifosfato
3.
Biotechnol Biofuels Bioprod ; 16(1): 195, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115067

RESUMEN

BACKGROUND: In industrial bioprocesses, microorganisms are generally selected based on performance, whereas robustness, i.e., the ability of a system to maintain a stable performance, has been overlooked due to the challenges in its quantification and implementation into routine experimental procedures. This work presents four ways of implementing robustness quantification during strain characterisation. One Saccharomyces cerevisiae laboratory strain (CEN.PK113-7D) and two industrial strains (Ethanol Red and PE2) grown in seven different lignocellulosic hydrolysates were assessed for growth-related functions (specific growth rate, product yields, etc.) and eight intracellular parameters (using fluorescent biosensors). RESULTS: Using flasks and high-throughput experimental setups, robustness was quantified in relation to: (i) stability of growth functions in response to the seven hydrolysates; (ii) stability of growth functions across different strains to establish the impact of perturbations on yeast metabolism; (iii) stability of intracellular parameters over time; (iv) stability of intracellular parameters within a cell population to indirectly quantify population heterogeneity. Ethanol Red was the best-performing strain under all tested conditions, achieving the highest growth function robustness. PE2 displayed the highest population heterogeneity. Moreover, the intracellular environment varied in response to non-woody or woody lignocellulosic hydrolysates, manifesting increased oxidative stress and unfolded protein response, respectively. CONCLUSIONS: Robustness quantification is a powerful tool for strain characterisation as it offers novel information on physiological and biochemical parameters. Owing to the flexibility of the robustness quantification method, its implementation was successfully validated at single-cell as well as high-throughput levels, showcasing its versatility and potential for several applications.

4.
ACS Synth Biol ; 12(8): 2493-2497, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37552581

RESUMEN

In this study, the three-step build-transform-assess toolbox for real-time monitoring of the yeast intracellular environment has been expanded and upgraded to the two-module ScEnSor (S. cerevisiae Engineering + Biosensor) Kit. The Biosensor Module includes eight fluorescent reporters for the intracellular environment; three of them (unfolded protein response, pyruvate metabolism, and ethanol consumption) were newly implemented to complement the original five. The Genome-Integration Module comprises a set of backbone plasmids for the assembly of 1-6 transcriptional units (each consisting of promoter, coding sequence, and terminator) for efficient marker-free single-locus genome integration (in HO and/or X2 loci). Altogether, the ScEnSor Kit enables rapid and easy construction of strains with new transcriptional units as well as high-throughput investigation of the yeast intracellular environment.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plásmidos/genética , Genoma Fúngico
5.
Trends Biotechnol ; 40(8): 918-931, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35120750

RESUMEN

Microbial cell factories are becoming increasingly popular for the sustainable production of various chemicals. Metabolic engineering has led to the design of advanced cell factories; however, their long-term yield, titer, and productivity falter when scaled up and subjected to industrial conditions. This limitation arises from a lack of robustness - the ability to maintain a constant phenotype despite the perturbations of such processes. This review describes predictable and stochastic industrial perturbations as well as state-of-the-art technologies to counter process variability. Moreover, we distinguish robustness from tolerance and discuss the potential of single-cell studies for improving system robustness. Finally, we highlight ways of achieving consistent and comparable quantification of robustness that can guide the selection of strains for industrial bioprocesses.


Asunto(s)
Microbiología Industrial , Ingeniería Metabólica , Humanos , Procesos Estocásticos
6.
Front Microbiol ; 12: 802169, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069506

RESUMEN

Industrial fermentation processes strive for high robustness to ensure optimal and consistent performance. Medium components, fermentation products, and physical perturbations may cause stress and lower performance. Cellular stress elicits a range of responses, whose extracellular manifestations have been extensively studied; whereas intracellular aspects remain poorly known due to lack of tools for real-time monitoring. Genetically encoded biosensors have emerged as promising tools and have been used to improve microbial productivity and tolerance toward industrially relevant stresses. Here, fluorescent biosensors able to sense the yeast intracellular environment (pH, ATP levels, oxidative stress, glycolytic flux, and ribosome production) were implemented into a versatile and easy-to-use toolbox. Marker-free and efficient genome integration at a conserved site on chromosome X of Saccharomyces cerevisiae strains and a commercial Saccharomyces boulardii strain was developed. Moreover, multiple biosensors were used to simultaneously monitor different intracellular parameters in a single cell. Even when combined together, the biosensors did not significantly affect key physiological parameters, such as specific growth rate and product yields. Activation and response of each biosensor and their interconnection were assessed using an advanced micro-cultivation system. Finally, the toolbox was used to screen cell behavior in a synthetic lignocellulosic hydrolysate that mimicked harsh industrial substrates, revealing differences in the oxidative stress response between laboratory (CEN.PK113-7D) and industrial (Ethanol Red) S. cerevisiae strains. In summary, the toolbox will allow both the exploration of yeast diversity and physiological responses in natural and complex industrial conditions, as well as the possibility to monitor production processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA