Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(2): 101256, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38774582

RESUMEN

Glycosylation of biopharmaceuticals can affect their safety and efficacy. Glycans can occur on recombinant adeno-associated viruses (rAAVs) that are used for gene therapy; however, the types of glycans that attach to rAAVs are controversial. Here, we conducted lectin microarray analyses on six rAAV serotype 6 (rAAV6) preparations that were produced differently. We demonstrate that O-glycans considered to be attached to rAAV6 were recognized by Agaricus bisporus agglutinin (ABA) and that N-glycans were detected in rAAV6 purified without affinity chromatography. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the N-glycans detected in rAAV6 were derived from host cell proteins. A combination of ABA-based fractionation and LC-MS/MS revealed that rAAV6 was O-glycosylated with the mucin-type glycans, O-GalNAc (Tn antigen), and mono- and di-sialylated Galß1-3GalNAc (T antigen) at S156, T162, T194, and T201 in viral protein (VP) 2 and with O-GlcNAc at T242 in VP3. The mucin-type O-glycosylated rAAV6 particles were 0.1%-1% of total particles. Further physicochemical and biological analyses revealed that mucin-type O-glycosylated rAAV6 had a lower ratio of VP1 to VP2/VP3, resulting in a lower transduction efficiency both in vitro and in vivo compared with rAAV6 without mucin-type O-glycans. This report details conclusive evidence of rAAV glycosylation and its impact on rAAV-based therapeutics.

2.
J Pharm Sci ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38570072

RESUMEN

Adeno-associated viruses (AAVs) are effective vectors for gene therapy. However, AAV drug products are inevitably contaminated with empty particles (EP), which lack a genome, owing to limitations of the purification steps. EP contamination can reduce the transduction efficiency and induce immunogenicity. Therefore, it is important to remove EPs and to determine the ratio of full genome-containing AAV particles to empty particles (F/E ratio). However, most of the existing methods fail to reliably evaluate F/E ratios that are greater than 90 %. In this study, we developed two approaches based on the image analysis of cryo-electron micrographs to determine the F/E ratios of various AAV products. Using our developed convolutional neural network (CNN) and morphological analysis, we successfully calculated the F/E ratios of various AAV products and determined the slight differences in the F/E ratios of highly purified AAV products (purity > 95 %). In addition, the F/E ratios calculated by analyzing more than 1000 AAV particles had good correlations with theoretical F/E ratios. Furthermore, the CNN reliably determined the F/E ratio with a smaller number of AAV particles than morphological analysis. Therefore, combining 100 keV cryo-EM with the developed image analysis methods enables the assessment of a wide range of AAV products.

3.
J Agric Food Chem ; 72(15): 8774-8783, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587054

RESUMEN

Proteins can be adsorbed on the air-water interface (AWI), and the structural changes in proteins at the AWI are closely related to the foaming properties of foods and beverages. However, how these structural changes in proteins at the AWI occur is not well understood. We developed a method for the structural assessment of proteins in the foam state using hydrogen/deuterium exchange mass spectrometry. Adsorption sites and structural changes in human serum albumin (HSA) were identified in situ at the peptide-level resolution. The N-terminus and the loop (E492-T506), which contains hydrophobic amino acids, were identified as adsorption sites. Both the structural flexibility and hydrophobicity were considered to be critical factors for the adsorption of HSA at the AWI. Structural changes in HSA were observed after more than one minute of foaming and were spread widely throughout the structure. These structural changes at the foam AWI were reversible.


Asunto(s)
Proteínas , Albúmina Sérica Humana , Humanos , Proteínas/química , Interacciones Hidrofóbicas e Hidrofílicas , Adsorción , Propiedades de Superficie
4.
Viruses ; 16(4)2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675928

RESUMEN

The higher-order structure (HOS) is a critical quality attribute of recombinant adeno-associated viruses (rAAVs). Evaluating the HOS of the entire rAAV capsid is challenging because of the flexibility and/or less folded nature of the VP1 unique (VP1u) and VP1/VP2 common regions, which are structural features essential for these regions to exert their functions following viral infection. In this study, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was used for the structural analysis of full and empty rAAV8 capsids. We obtained 486 peptides representing 85% sequence coverage. Surprisingly, the VP1u region showed rapid deuterium uptake even though this region contains the phospholipase A2 domain composed primarily of α-helices. The comparison of deuterium uptake between full and empty capsids showed significant protection from hydrogen/deuterium exchange in the full capsid at the channel structure of the 5-fold symmetry axis. This corresponds to cryo-electron microscopy studies in which the extended densities were observed only in the full capsid. In addition, deuterium uptake was reduced in the VP1u region of the full capsid, suggesting the folding and/or interaction of this region with the encapsidated genome. This study demonstrated HDX-MS as a powerful method for probing the structure of the entire rAAV capsid.


Asunto(s)
Proteínas de la Cápside , Cápside , Dependovirus , Dependovirus/química , Dependovirus/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Cápside/química , Cápside/metabolismo , Serogrupo , Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Humanos , Deuterio/química , Espectrometría de Masas , Microscopía por Crioelectrón , Modelos Moleculares
5.
Biotechnol Bioeng ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500437

RESUMEN

Microfiltration (MF) is an essential step during biopharmaceutical manufacturing. However, unexpected flux decay can occur. Although the flux decay profile and initial flux are important factors determining MF filterability, predicting them accurately is challenging, as the root cause of unexpected flux decay remains elusive. In this study, the methodology for developing a prediction model of flux decay profiles was established. First, the filtration profiles of different monodisperse polystyrene latex and silica beads of various sizes were evaluated. These results revealed that the size and surface electrostatic properties of the beads affect the flux decay profile. Taking the size and surface electrostatic properties of protein aggregates into account, we constructed a predictive model using model bead filtration profiles. We showed that this methodology was applicable to two different MF filters to predict the flux decay profile of therapeutic proteins. Because our proposed prediction model is based on normalized flux, the initial flux is required to predict the overall filtration profile. Then, we applied the Hagen-Poiseuille equation using sample viscosity values to estimate the initial flux. The developed prediction models can be used for effective MF scale-up assessment during the early stages of process development.

6.
Anal Chem ; 96(2): 642-651, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38165078

RESUMEN

Adeno-associated virus (AAV) vectors are produced as a mixture of the desired particle (full particle, FP), which is filled with the designed DNA, product-related impurities such as particle without DNA (empty particle, EP), and aggregates. Cesium chloride or iodixanol equilibrium density gradient ultracentrifugation (DGE-UC) has been used for the purification of AAV vectors. DGE-UC can separate FP from impurities based on the difference in their buoyant densities. Here, we report the applications and limitations of equilibrium density gradient analytical ultracentrifugation (DGE-AUC) using a modern AUC instrument that employs DGE-UC principles for the characterization and quantitation of AAV vectors. We evaluated the quantitative ability of DGE-AUC in comparison with sedimentation velocity AUC (SV-AUC) or band sedimentation AUC (BS-AUC) using AAVs with different DNA lengths and different serotypes. DGE-AUC enabled the accurate quantification of the ratio of FP to EP when the AAV vector primarily contains these particles. Furthermore, we developed a new workflow to identify the components of separated peaks in addition to FP and EP. Ultraviolet absorption spectra obtained by multiwavelength detection can also support peak assignment following component identification. DGE-AUC experiments for AAV vectors have limitations with regard to minor components with low absorption at the detected wavelength or those with a density similar to that of major components of AAV vectors. DGE-AUC is the only analytical method that can evaluate particle density heterogeneity; therefore, SV-AUC or BS-AUC and DGE-AUC are complementary methods for reliable assessment of the purity of AAV vectors.


Asunto(s)
Dependovirus , Vectores Genéticos , Dependovirus/genética , Ultracentrifugación/métodos , ADN
7.
J Pharm Sci ; 113(4): 891-899, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37926233

RESUMEN

During biopharmaceutical development, particle monitoring and characterization are crucial. Notably, particles can be impurities considered as critical quality attribute, or active pharmaceutical ingredient (e.g., viral vectors) or drug delivery system (e.g., lipid nanoparticles) itself. Three-dimensional homodyne light detection (3D-HLD) is a novel technique that can characterize particles in the ∼0.2 µm to 2.0 µm size range. We evaluated 3D-HLD for the analysis of high concentration protein formulations (up to 200 mg/mL), where formulation refractive index and background noise became limiting factors with increasing protein concentration. Sample viscosity however did not impact 3D-HLD results, in contrast to comparative analyses with NTA and MRPS. We also applied 3D-HLD in high-throughput screenings at high protein concentration or of lipid nanoparticle and viral vector formulations, where impurities were analyzed in the presence of a small (<0.2 µm) particulate active pharmaceutical ingredient. 3D-HLD turned out to be in good agreement with or a good complement to other state-of-the-art particle characterization techniques, including BMI, MRPS, and DLS. The main application of 3D-HLD is high-throughput particle analysis at low sample volume. Follow-up investigation of the optimized particle sizing approach and of detection settings could further improve the understanding of the method and potentially increase ease of operation.


Asunto(s)
Productos Biológicos , Nanopartículas , Medicamentos a Granel , Proteínas/análisis , Nanopartículas/análisis , Ensayos Analíticos de Alto Rendimiento , Tamaño de la Partícula
8.
Mol Ther Methods Clin Dev ; 31: 101142, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38027055

RESUMEN

Studies of recombinant adeno-associated virus (rAAV) revealed the mixture of full particles with different densities in rAAV. There are no conclusive results because of the lack of quantitative stoichiometric viral proteins, encapsidated DNA, and particle level analyses. We report the first comprehensive characterization of low- and high-density rAAV serotype 2 particles. Capillary gel electrophoresis showed high-density particles possessing a designed DNA encapsidated in the capsid composed of (VP1 + VP2)/VP3 = 0.27, whereas low-density particles have the same DNA but with a different capsid composition of (VP1 + VP2)/VP3 = 0.31, supported by sedimentation velocity-analytical ultracentrifugation and charge detection-mass spectrometry. In vitro analysis demonstrated that the low-density particles had 8.9% higher transduction efficacy than that of the particles before fractionation. Further, based on our recent findings of VP3 clip, we created rAAV2 single amino acid variants of the transcription start methionine of VP3 (M203V) and VP3 clip (M211V). The rAAV2-M203V variant had homogeneous particles with higher (VP1+VP2)/VP3 values (0.35) and demonstrated 24.7% higher transduction efficacy compared with the wild type. This study successfully provided highly functional rAAV by the extensive fractionation from the mixture of rAAV2 full particles or by the single amino acid replacement.

9.
J Pharm Sci ; 112(12): 3248-3255, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37813302

RESUMEN

Flow imaging microscopy (FIM) is widely used to characterize biopharmaceutical subvisible particles (SVPs). The segmentation threshold, which defines the boundary between the particle and the background based on pixel intensity, should be properly set for accurate SVP quantification. However, segmentation thresholds are often subjectively and empirically set, potentially leading to variations in measurements across instruments and operators. In the present study, we developed an objective method to optimize the FIM segmentation threshold using poly(methyl methacrylate) (PMMA) beads with a refractive index similar to that of biomolecules. Among several candidate particles that were evaluated, 2.5-µm PMMA beads were the most reliable in size and number, suggesting that the PMMA bead size analyzed by FIM could objectively be used to determine the segmentation threshold for SVP measurements. The PMMA bead concentrations measured by FIM were highly consistent with the indicative concentrations, whereas the PMMA bead size analyzed by FIM decreased with increasing segmentation threshold. The optimal segmentation threshold where the analyzed size was closest to the indicative size differed between an instrument with a black-and-white camera and that with a color camera. Inter-instrument differences in SVP concentrations in acid-stressed recombinant adeno-associated virus (AAV) and protein aggregates were successfully minimized by setting an optimized segmentation threshold specific to the instrument. These results reveal that PMMA beads can aid in determining a more appropriate segmentation threshold to evaluate biopharmaceutical SVPs using FIM.


Asunto(s)
Productos Biológicos , Microscopía/métodos , Polimetil Metacrilato , Refractometría , Tamaño de la Partícula
10.
J Pharm Sci ; 112(4): 937-946, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36374763

RESUMEN

Adeno-associated virus (AAV) vector is a promising platform for in vivo gene therapy. The accurate assessment of distribution state of particles contained in AAV vector samples is one of the most important and challenging matters and is necessary because the product-related impurities with the capsid structure (empty particles, intermediate particles, and aggregates) could be a possible cause of reducing the therapeutic efficacy and enhancing the unfavorable immune response. In this study, we report an effective approach for size distribution analysis with component identification. A small amount of AAV vectors were used by the analytical zone centrifugation c(s) analysis of band sedimentation analytical ultracentrifugation (BS-AUC) with multiwavelength detection. Using PBS/H218O, the concentration of each component could be determined in BS-AUC with high resolution. Compared with the sedimentation velocity AUC (SV-AUC), which generally requires 2 × 1012 vg of AAV vectors, BS-AUC could be performed with about 1/25 of the AAV vector amount at 260 nm detection and ideally with about 1/50 of the AAV vector amount at 230 nm detection (4 × 1010 vg), depending on the extinction coefficient of the AAV sample at each wavelength. According to the limit of quantification of this BS-AUC, 6.3 × 1011 cp mL-1 of empty particle (EP) and 4.4 × 1011 vg mL-1 of full particle (FP) could be quantified for 4 × 1010 vg in 15 µL of AAV8-CMV-EGFP. These results demonstrated that proposed BS-AUC approach we established here can compensate for the drawback in terms of the sample amount of SV-AUC.


Asunto(s)
Proteínas de la Cápside , Dependovirus , Dependovirus/genética , Proteínas de la Cápside/genética , Terapia Genética , Ultracentrifugación/métodos , Vectores Genéticos
11.
J Pharm Sci ; 112(2): 492-505, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36167196

RESUMEN

An increase in protein aggregates during transportation should be suppressed in therapeutic protein products because the aggregates have a potential risk of immunogenicity. In this study, three protein solutions in vials were exposed to tri-axial vibration with various combinations of frequency and acceleration using a transportation test system to investigate the relationship between low g-force stresses and protein aggregate generation. The number concentration of micron aggregates detected by flow imaging analysis increased markedly when the acceleration and frequency of agitation were within a specific range, in other words, above a threshold. This threshold was common among the three protein solutions. The suppression of micron aggregate formation by adding a surfactant suggested that agitation above the threshold increased micron aggregates mainly via interface-mediated routes. Notably, agitation, including agitation below the threshold, accelerated spontaneous oligomerization (nanometer aggregate generation) of proteins in bulk solution even in the presence of the surfactant. Studies of stability against mechanical stresses (e.g., a random vibration test to simulate actual shipment, with a time-compressed setting by increasing acceleration) need to be performed and discussed with careful consideration of the threshold for generating micron aggregates.


Asunto(s)
Anticuerpos Monoclonales , Tensoactivos , Anticuerpos Monoclonales/metabolismo , Agregado de Proteínas , Estrés Mecánico
12.
J Pharm Sci ; 111(11): 3017-3028, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35948157

RESUMEN

Subvisible particles (SVPs) are a critical quality attribute of parenteral and ophthalmic products. United States Pharmacopeia recommends the characterizations of SVPs which are classified into intrinsic, extrinsic, and inherent particles. Flow imaging microscopy (FIM) is useful as an orthogonal method in both the quantification and classification of SVPs because FIM instruments provide particle images. In addition to the conventionally used FlowCam (Yokogawa Fluid Imaging Technologies) and Micro-Flow Imaging (Bio-Techne) instruments, the iSpect DIA-10 (Shimadzu) instrument has recently been released. The three instruments have similar detection principles but different optical settings and image processing, which may lead to different results of the quantification and classification of SVPs based on the information from particle images. The present study compares four types of SVP (protein aggregates, silicone oil droplets, and surrogates for solid free-fatty-acid particles, milled-lipid particles, and sprayed-lipid particles) to compare the results of size distributions and classification abilities obtained using morphological features and a deep-learning approach. Although the three FIM instruments were effective in classifying the four types of SVP through convolutional neural network analysis, there was no agreement on the size distribution for the same protein aggregate solution, suggesting that using the classifiers of the FIM instruments could result in different evaluations of SVPs in the field of biopharmaceuticals.


Asunto(s)
Productos Biológicos , Agregado de Proteínas , Lípidos , Microscopía/métodos , Tamaño de la Partícula , Aceites de Silicona
13.
J Pharm Sci ; 111(10): 2745-2757, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35839866

RESUMEN

In this study, we conducted a collaborative study on the classification between silicone oil droplets and protein particles detected using the flow imaging (FI) method toward proposing a standardized classifier/model. We compared four approaches, including a classification filter composed of particle characteristic parameters, principal component analysis, decision tree, and convolutional neural network in the performance of the developed classifier/model. Finally, the points to be considered were summarized for measurement using the FI method, and for establishing the classifier/model using machine learning to differentiate silicone oil droplets and protein particles.


Asunto(s)
Aceites de Silicona , Siliconas , Tamaño de la Partícula , Proteínas
14.
MAbs ; 14(1): 2038531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35291930

RESUMEN

The interaction between IgG and Fc gamma receptor IIIa (FcγRIIIa) is essential for mediating immune responses. Recent studies have shown that the antigen binding fragment (Fab) and Fc are involved in IgG-FcγRIII interactions. Here, we conducted bio-layer interferometry (BLI) and isothermal titration calorimetry to measure the kinetic and thermodynamic parameters that define the role of Fab in forming the IgG-FcγRIII complex using several marketed therapeutic antibodies. Moreover, hydrogen/deuterium exchange mass spectrometry (HDX-MS) and crosslinking mass spectrometry (XL-MS) were used to clarify the interaction sites and structural changes upon formation of these IgG-FcγRIII complexes. The results showed that Fab in IgG facilitates the interaction via slower dissociation and a larger enthalpy gain. However, a larger entropy loss led to only a marginal change in the equilibrium dissociation constant. Combined HDX-MS and XL-MS analysis revealed that the CL domain of Fab in IgG was in close proximity to FcγRIIIa, indicating that this domain specifically interacts with the extracellular membrane-distal domain (D1) and membrane-proximal domain (D2) of FcγRIIIa. Together with previous studies, these results demonstrate that IgG-FcγRIII interactions are predominantly mediated by the binding of Fc to D2, and the Fab-FcγRIII interaction stabilizes complex formation. These interaction schemes were essentially fucosylation-independent, with Fc-D2 interactions enhanced by afucosylation and the contribution of Fab slightly reduced. Furthermore, the influence of antigen binding on IgG-FcγRIII interactions was also investigated. Combined BLI and HDX-MS results indicate that structural alterations in Fab caused by antigen binding facilitate stabilization of IgG-FcγRIII interactions. This report provides a comprehensive understanding of the interaction between IgG and FcγRIII.


Asunto(s)
Inmunoglobulina G , Receptores de IgG , Glicosilación , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Receptores de IgG/metabolismo
15.
J Pharm Sci ; 111(3): 663-671, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34706282

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors have proven efficacy as gene therapy vehicles. However, non-specific adsorption of these vectors on solid surfaces is encountered during production, storage, and administration, as well as in quantification processes. Such adsorption has been reported to result in the loss of up to 90% of vector particles and can also result in high variability in vector genome quantification. In this study, we demonstrate the effective decrease of recombinant adeno-associated virus vector adsorption by application of a polyionic hydrophilic complex polymer coating on the surfaces of the tools used in viral vector quantification analyses [i.e., pipette tips, cryotube vials, and quantitative polymerase chain reaction (qPCR) plates]. qPCR analyses showed efficient recovery of vector particles from tools with this coating, with up to 95% of vector particle loss being prevented, leading to a higher transduction efficiency in vitro. Thus, the tested coating has the potential to be widely used in material processing in the gene therapy field.


Asunto(s)
Dependovirus , Vectores Genéticos , Adsorción , Dependovirus/genética , Terapia Genética
16.
J Pharm Sci ; 110(11): 3568-3579, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34310973

RESUMEN

Protein aggregate formation in prefilled syringes (PFSs) can be influenced by protein adsorption and desorption at the solid-liquid interface. Although inhibition of protein adsorption on the PFS surface can lead to a decrease in the amount of aggregation, the mechanism underlying protein adsorption-mediated aggregation in PFSs is unclear. This study investigated protein aggregation caused by protein adsorption on silicone oil-free PFS surfaces [borosilicate glass (GLS) and cycloolefin polymer (COP)] and the factors affecting the protein adsorption on the PFS surfaces. The adsorbed proteins formed multilayered structures that consisted of two distinct types of layers: proteins adsorbed on the surface of the material and proteins adsorbed on top of the proteins on the surface. A pH-dependent electrostatic interaction was the dominant force for protein adsorption on the GLS surface, while hydrophobic effects were dominant for protein adsorption on the COP surface. When the repulsion force between proteins was weak, protein adsorption on the adsorbed protein layer was increased for both materials and as a result, protein aggregation increased. Therefore, a formulation with high colloidal stability can minimize protein adsorption on the COP surface, leading to reduced protein aggregation.


Asunto(s)
Proteínas , Jeringas , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Aceites de Silicona , Propiedades de Superficie
17.
J Pharm Sci ; 110(10): 3375-3384, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34186069

RESUMEN

During the manufacturing of recombinant adeno-associated virus vectors, it is generally difficult to purify out vectors that lack nucleic acids (empty particles, EPs), contain incomplete nucleic acids (intermediate particles, IPs) or aggregates. These impurities may cause side effects and therefore it is essential to both quantify and reduce them; however, comprehensive identification of the size distribution and components of virus vectors have been lagging. We developed multiwavelength sedimentation velocity analytical ultracentrifugation to characterize EPs, full particles, IPs, and aggregates in adeno-associated virus vector samples. The wavelength-dependent ultraviolet (UV) absorption of capsid protein and encapsulated single-stranded DNA could be deduced from the multiwavelength detection followed by size distribution analysis and peak area integration. Subsequently, a spectral deconvolution analysis using the wavelength-dependent UV absorption data enabled the identification of the protein-nucleic acid ratio of all species. A comprehensive approach for quantifying the viral vector particles and related impurities was established.


Asunto(s)
Dependovirus , Vectores Genéticos , Proteínas de la Cápside , Dependovirus/genética , Ultracentrifugación , Virión
18.
Hum Gene Ther ; 32(21-22): 1403-1416, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34082578

RESUMEN

Recombinant adeno-associated virus is a leading platform in human gene therapy. The adeno-associated virus (AAV) capsid is composed of three viral proteins (VPs): VP1, VP2, and VP3. To ensure the safety of AAV-based gene therapy products, the stoichiometry of VPs of AAV vector should be carefully monitored. In this study, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, capillary gel electrophoresis (CGE), and liquid chromatography-UV-mass spectrometry (LC-UV-MS) were performed to evaluate the VP components of AAV1, AAV2, and AAV6. Two types of VP3-related components, VP3 variant and VP3 fragment, were identified. The VP3 variant was the N-terminal shorter VP3, of which the translation started at M211, not at the conventional initiation codon, M203. The VP3 variant could be generated by leaky scanning of the first initiation codon of VP3. We also showed that the VP3 variant was identified in a minor peak before VP3 in CGE measurement. Meanwhile, the VP3 fragment was the C-terminal cleaved VP3, of which the sequence of VP3 ended at D590 or D626, indicating that cleavage occurred between D590 and P591, or D626 and G627. The cause of the cleavage of the DP or DG sequence was hydrolysis due to low pH of the mobile phase and high temperature of the column oven in the LC system, which was necessary to clearly separate the peak of VPs. VP3 fragments, detected only in LC-UV-MS in small amount account with less than 3% of total peak area, should be included in the quantification of VP3. Finally, the relationship of VP stoichiometry determined by the above three methods was discussed. From this study, we proposed that the VP components of AAV should be complementarily evaluated by CGE and LC-UV-MS.


Asunto(s)
Proteínas de la Cápside , Dependovirus , Cápside , Proteínas de la Cápside/genética , Dependovirus/genética , Electroforesis , Humanos , Espectrometría de Masas
19.
J Pharm Sci ; 110(5): 2121-2129, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33340531

RESUMEN

Upscaling the production capacity of inactivated poliovirus vaccines (IPV) is urgently needed to eradicate polio worldwide. For the development of a robust manufacturing process for IPV, the impact of stresses on the properties of the poliovirus during manufacturing needs to be carefully evaluated. In this study, the physicochemical properties of Sabin poliovirus after low pH exposure were analyzed by asymmetrical flow field-flow fractionation coupled to multi-angle laser light scattering (AF4-MALS), sedimentation velocity analytical ultracentrifugation (SV-AUC), transmission electron microscopy (TEM), dynamic light scattering (DLS) and surface plasmon resonance (SPR). Low pH stress caused structural changes and aggregation of inactivated poliovirus virions, whereas degraded virion particles would not revert to native virions even after neutralization. Importantly, a complete loss of the D-antigenicity of IPV by low pH stress, followed by neutralization, was observed in SPR. These results suggest that the exposure of poliovirus particle to low pH stress would induce irreversible denaturation and aggregation of virus particles and lead to the loss of D-antigenicity; thus, low pH stress during the manufacturing of poliovirus vaccine should be minimized. The analytical methods above can be efficiently utilized in the development of high-integrity manufacturing processes and high-quality vaccines.


Asunto(s)
Poliomielitis , Poliovirus , Humanos , Vacuna Antipolio de Virus Inactivados , Resonancia por Plasmón de Superficie , Virión
20.
Expert Opin Drug Deliv ; 18(4): 459-470, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33217252

RESUMEN

INTRODUCTION: Several new biopharmaceutical dosage forms have developed over time, such as lyophilized vial, liquid vial, and liquid prefilled syringe formulations. This review summarizes major pharmaceutical dosage forms and their advantages, disadvantages, and countermeasures against the shortcomings of each formulation. The appropriate combination of active pharmaceutical ingredients, excipients, and containers should be selected for the safe and less burdensome administration to the patients. Finally, we note certain opinions on the future development of not only therapeutic proteins but also gene therapeutics. AREAS COVERED: This review is to discuss the challenges of the development of dosage forms to improve pharmaceutical stability and how they can be overcome. EXPERT OPINION: Silicone oil-free syringes are highly preferable for minimizing subvisible particles in the drug. It can be proposed that materials with less protein adsorption property are preferable for the suppression of protein aggregation. It is required to minimize adverse effects of biopharmaceuticals through proper quality control of the drug in a container, based on the understating of physicochemical stability of the protein in solution, the physicochemical properties of the container, and their combinations.


Asunto(s)
Productos Biológicos , Jeringas , Embalaje de Medicamentos , Excipientes , Humanos , Aceites de Silicona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA