Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6295, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813864

RESUMEN

Genetic engineering of immune cells has opened new avenues for improving their functionality but it remains a challenge to pinpoint which genes or combination of genes are the most beneficial to target. Here, we conduct High Multiplicity of Perturbations and Cellular Indexing of Transcriptomes and Epitopes (HMPCITE-seq) to find combinations of genes whose joint targeting improves antigen-presenting cell activity and enhances their ability to activate T cells. Specifically, we perform two genome-wide CRISPR screens in bone marrow dendritic cells and identify negative regulators of CD86, that participate in the co-stimulation programs, including Chd4, Stat5b, Egr2, Med12, and positive regulators of PD-L1, that participate in the co-inhibitory programs, including Sptlc2, Nckap1l, and Pi4kb. To identify the genetic interactions between top-ranked genes and find superior combinations to target, we perform high-order Perturb-Seq experiments and we show that targeting both Cebpb and Med12 results in a better phenotype compared to the single perturbations or other combinations of perturbations.


Asunto(s)
Activación de Linfocitos , Linfocitos T , Activación de Linfocitos/genética , Factores de Transcripción , Transcriptoma/genética , Inmunidad Innata/genética
2.
Cell Rep ; 41(9): 111719, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36450253

RESUMEN

Diabetogenic ablation of beta cells in mice triggers a regenerative response whereby surviving beta cells proliferate and euglycemia is regained. Here, we identify and characterize heterogeneity in response to beta cell ablation. Efficient beta cell elimination leading to severe hyperglycemia (>28 mmol/L), causes permanent diabetes with failed regeneration despite cell cycle engagement of surviving beta cells. Strikingly, correction of glycemia via insulin, SGLT2 inhibition, or a ketogenic diet for about 3 weeks allows partial regeneration of beta cell mass and recovery from diabetes, demonstrating regenerative potential masked by extreme glucotoxicity. We identify gene expression changes in beta cells exposed to extremely high glucose levels, pointing to metabolic stress and downregulation of key cell cycle genes, suggesting failure of cell cycle completion. These findings reconcile conflicting data on the impact of glucose on beta cell regeneration and identify a glucose threshold converting glycemic load from pro-regenerative to anti-regenerative.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Células Secretoras de Insulina , Animales , Ratones , Control Glucémico , Glucosa
3.
Diabetes ; 71(3): 453-469, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862201

RESUMEN

The dynamic regulation of autophagy in ß-cells by cycles of fasting-feeding and its effects on insulin secretion are unknown. In ß-cells, mechanistic target of rapamycin complex 1 (mTORC1) is inhibited while fasting and is rapidly stimulated during refeeding by a single amino acid, leucine, and glucose. Stimulation of mTORC1 by nutrients inhibited the autophagy initiator ULK1 and the transcription factor TFEB, thereby preventing autophagy when ß-cells were continuously exposed to nutrients. Inhibition of mTORC1 by Raptor knockout mimicked the effects of fasting and stimulated autophagy while inhibiting insulin secretion, whereas moderate inhibition of autophagy under these conditions rescued insulin secretion. These results show that mTORC1 regulates insulin secretion through modulation of autophagy under different nutritional situations. In the fasting state, autophagy is regulated in an mTORC1-dependent manner, and its stimulation is required to keep insulin levels low, thereby preventing hypoglycemia. Reciprocally, stimulation of mTORC1 by elevated leucine and glucose, which is common in obesity, may promote hyperinsulinemia by inhibiting autophagy.


Asunto(s)
Autofagia/fisiología , Células Secretoras de Insulina/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Animales , Autofagia/efectos de los fármacos , Línea Celular , Ayuno , Glucosa/farmacología , Humanos , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/fisiología , Leucina/farmacología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodo Posprandial/fisiología
4.
Diabetologia ; 64(5): 1133-1143, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33558985

RESUMEN

AIMS/HYPOTHESIS: Acute hyperglycaemia stimulates pancreatic beta cell proliferation in the mouse whereas chronic hyperglycaemia appears to be toxic. We hypothesise that this toxic effect is mediated by increased beta cell workload, unrelated to hyperglycaemia per se. METHODS: To test this hypothesis, we developed a novel mouse model of cell-autonomous increased beta cell glycolytic flux caused by a conditional heterozygous beta cell-specific mutation that activates glucokinase (GCK), mimicking key aspects of the rare human genetic disease GCK-congenital hyperinsulinism. RESULTS: In the mutant mice, we observed random and fasting hypoglycaemia (random 4.5-5.4 mmol/l and fasting 3.6 mmol/l) that persisted for 15 months. GCK activation led to increased beta cell proliferation as measured by Ki67 expression (2.7% vs 1.5%, mutant and wild-type (WT), respectively, p < 0.01) that resulted in a 62% increase in beta cell mass in young mice. However, by 8 months of age, mutant mice developed impaired glucose tolerance, which was associated with decreased absolute beta cell mass from 2.9 mg at 1.5 months to 1.8 mg at 8 months of age, with preservation of individual beta cell function. Impaired glucose tolerance was further exacerbated by a high-fat/high-sucrose diet (AUC 1796 vs 966 mmol/l × min, mutant and WT, respectively, p < 0.05). Activation of GCK was associated with an increased DNA damage response and an elevated expression of Chop, suggesting metabolic stress as a contributor to beta cell death. CONCLUSIONS/INTERPRETATION: We propose that increased workload-driven biphasic beta cell dynamics contribute to decreased beta cell function observed in long-standing congenital hyperinsulinism and type 2 diabetes.


Asunto(s)
Hiperinsulinismo Congénito/patología , Glucoquinasa/genética , Células Secretoras de Insulina/patología , Animales , Recuento de Células , Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Femenino , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Ratones , Ratones Transgénicos , Mutación , Tamaño de los Órganos
5.
Nat Commun ; 7: 13496, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27882918

RESUMEN

Insulin secretion from pancreatic ß-cells is impaired in all forms of diabetes. The resultant hyperglycaemia has deleterious effects on many tissues, including ß-cells. Here we show that chronic hyperglycaemia impairs glucose metabolism and alters expression of metabolic genes in pancreatic islets. In a mouse model of human neonatal diabetes, hyperglycaemia results in marked glycogen accumulation, and increased apoptosis in ß-cells. Sulphonylurea therapy rapidly normalizes blood glucose levels, dissipates glycogen stores, increases autophagy and restores ß-cell metabolism. Insulin therapy has the same effect but with slower kinetics. Similar changes are observed in mice expressing an activating glucokinase mutation, in in vitro models of hyperglycaemia, and in islets from type-2 diabetic patients. Altered ß-cell metabolism may underlie both the progressive impairment of insulin secretion and reduced ß-cell mass in diabetes.


Asunto(s)
Apoptosis/fisiología , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucógeno/metabolismo , Hiperglucemia/metabolismo , Enfermedades del Recién Nacido/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/fisiología , Glucemia/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Glucoquinasa/genética , Humanos , Hipoglucemiantes/farmacología , Técnicas In Vitro , Recién Nacido , Insulina/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Mutación , Ratas , Compuestos de Sulfonilurea/farmacología
6.
Nat Med ; 22(4): 412-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26950362

RESUMEN

Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.


Asunto(s)
Envejecimiento/genética , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/biosíntesis , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Envejecimiento/patología , Animales , Proliferación Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , PPAR gamma/genética , Serina-Treonina Quinasas TOR/genética
7.
Cell Metab ; 19(1): 109-21, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24332968

RESUMEN

ß cell failure in type 2 diabetes (T2D) is associated with hyperglycemia, but the mechanisms are not fully understood. Congenital hyperinsulinism caused by glucokinase mutations (GCK-CHI) is associated with ß cell replication and apoptosis. Here, we show that genetic activation of ß cell glucokinase, initially triggering replication, causes apoptosis associated with DNA double-strand breaks and activation of the tumor suppressor p53. ATP-sensitive potassium channels (KATP channels) and calcineurin mediate this toxic effect. Toxicity of long-term glucokinase overactivity was confirmed by finding late-onset diabetes in older members of a GCK-CHI family. Glucagon-like peptide-1 (GLP-1) mimetic treatment or p53 deletion rescues ß cells from glucokinase-induced death, but only GLP-1 analog rescues ß cell function. DNA damage and p53 activity in T2D suggest shared mechanisms of ß cell failure in hyperglycemia and CHI. Our results reveal membrane depolarization via KATP channels, calcineurin signaling, DNA breaks, and p53 as determinants of ß cell glucotoxicity and suggest pharmacological approaches to enhance ß cell survival in diabetes.


Asunto(s)
Hiperinsulinismo Congénito/complicaciones , Roturas del ADN de Doble Cadena , Diabetes Mellitus Tipo 2/complicaciones , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Biomarcadores/metabolismo , Calcineurina/metabolismo , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Hiperinsulinismo Congénito/enzimología , Hiperinsulinismo Congénito/patología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Inducción Enzimática/efectos de los fármacos , Ayuno/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Glucoquinasa/biosíntesis , Glucosa/toxicidad , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/enzimología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...