Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(28): e2210152120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37406102

RESUMEN

Sepsis has emerged as a global health burden associated with multiple organ dysfunction and 20% mortality rate in patients. Numerous clinical studies over the past two decades have correlated the disease severity and mortality in septic patients with impaired heart rate variability (HRV), as a consequence of impaired chronotropic response of sinoatrial node (SAN) pacemaker activity to vagal/parasympathetic stimulation. However, the molecular mechanism(s) downstream to parasympathetic inputs have not been investigated yet in sepsis, particularly in the SAN. Based on electrocardiography, fluorescence Ca2+ imaging, electrophysiology, and protein assays from organ to subcellular level, we report that impaired muscarinic receptor subtype 2-G protein-activated inwardly-rectifying potassium channel (M2R-GIRK) signaling in a lipopolysaccharide-induced proxy septic mouse model plays a critical role in SAN pacemaking and HRV. The parasympathetic responses to a muscarinic agonist, namely IKACh activation in SAN cells, reduction in Ca2+ mobilization of SAN tissues, lowering of heart rate and increase in HRV, were profoundly attenuated upon lipopolysaccharide-induced sepsis. These functional alterations manifested as a direct consequence of reduced expression of key ion-channel components (GIRK1, GIRK4, and M2R) in the mouse SAN tissues and cells, which was further evident in the human right atrial appendages of septic patients and likely not mediated by the common proinflammatory cytokines elevated in sepsis.


Asunto(s)
Lipopolisacáridos , Sepsis , Humanos , Animales , Ratones , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Nodo Sinoatrial/fisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Transducción de Señal/fisiología , Sepsis/inducido químicamente , Sepsis/metabolismo
2.
Sci Rep ; 13(1): 3054, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810863

RESUMEN

Microcebus murinus, or gray mouse lemur (GML), is one of the smallest primates known, with a size in between mice and rats. The small size, genetic proximity to humans and prolonged senescence, make this lemur an emerging model for neurodegenerative diseases. For the same reasons, it could help understand how aging affects cardiac activity. Here, we provide the first characterization of sinoatrial (SAN) pacemaker activity and of the effect of aging on GML heart rate (HR). According to GML size, its heartbeat and intrinsic pacemaker frequencies lie in between those of mice and rats. To sustain this fast automaticity the GML SAN expresses funny and Ca2+ currents (If, ICa,L and ICa,T) at densities similar to that of small rodents. SAN automaticity was also responsive to ß-adrenergic and cholinergic pharmacological stimulation, showing a consequent shift in the localization of the origin of pacemaker activity. We found that aging causes decrease of basal HR and atrial remodeling in GML. We also estimated that, over 12 years of a lifetime, GML generates about 3 billion heartbeats, thus, as many as humans and three times more than rodents of equivalent size. In addition, we estimated that the high number of heartbeats per lifetime is a characteristic that distinguishes primates from rodents or other eutherian mammals, independently from body size. Thus, cardiac endurance could contribute to the exceptional longevity of GML and other primates, suggesting that GML's heart sustains a workload comparable to that of humans in a lifetime. In conclusion, despite the fast HR, GML replicates some of the cardiac deficiencies reported in old people, providing a suitable model to study heart rhythm impairment in aging. Moreover, we estimated that, along with humans and other primates, GML presents a remarkable cardiac longevity, enabling longer life span than other mammals of equivalent size.


Asunto(s)
Cheirogaleidae , Humanos , Ratas , Animales , Longevidad , Envejecimiento/fisiología , Corazón , Frecuencia Cardíaca/fisiología , Mamíferos
3.
J Am Coll Cardiol ; 80(23): 2205-2219, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36456051

RESUMEN

BACKGROUND: Patients with metabolic syndrome (MetS) have an increased risk of atrial fibrillation (AF). Impaired Ca2+ homeostasis and mitochondrial dysfunction have emerged as an arrhythmogenic substrate in both patients and animal models of MetS. Whether impaired mitochondrial Ca2+ handling underlies AF associated with MetS remains poorly explored. OBJECTIVES: The aim of this study was to determine the initial mechanisms related to AF susceptibility and mitochondrial dysfunction encountered in metabolic cardiomyopathy. METHODS: A total of 161 mice and 34 patients were studied. Mitochondrial Ca2+ and mitochondrial Ca2+ uniporter complex (MCUC) were investigated in right atrial tissue of patients with (n = 18) or without (n = 16) MetS and of C57Bl/6J mice fed with a high-fat sucrose diet (HFS) for 2 (n = 42) or 12 (n = 39) weeks. Susceptibility to AF was evaluated in isolated sinoatrial tissue and in vivo in mice. RESULTS: Increased expression of the MICUs subunits of the MCUC (1.00 ± 0.33 AU vs 1.29 ± 0.23 AU; P = 0.034) was associated with impaired mitochondrial Ca2+ uptake in patients (168.7 ± 31.3 nmol/min/mg vs 127.3 ± 18.4 nmol/min/mg; P = 0.026) and HFS mice (0.10 ± 0.04 ΔF/F0 × ms-1 vs 0.06 ± 0.03 ΔF/F0 × ms-1; P = 0.0086, and 0.15 ± 0.07 ΔF/F0 × ms-1 vs 0.046 ± 0.03 ΔF/F0 × ms-1; P = 0.0076 in 2- and 12-week HFS mice, respectively). HFS mice elicited a 70% increased susceptibility to AF. The MCUC agonist kaempferol restored MCUC activity in vitro and abolished the occurrence of AF in HFS mice. CONCLUSIONS: Impaired MCUC activity and mitochondrial Ca2+ homeostasis from the early stage of metabolic cardiomyopathy in mice lead to AF. Given that similar defects in cardiac mitochondrial Ca2+ handling are present in MetS patients, the modulation of the MCUC activity represents an attractive antiarrhythmic strategy.


Asunto(s)
Apéndice Atrial , Fibrilación Atrial , Síndrome Metabólico , Ratones , Animales , Fibrilación Atrial/etiología , Calcio , Síndrome Metabólico/complicaciones , Antiarrítmicos , Ratones Endogámicos C57BL
4.
Annu Rev Pharmacol Toxicol ; 61: 757-778, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33017571

RESUMEN

The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.


Asunto(s)
Síndrome del Seno Enfermo , Nodo Sinoatrial , Sistema de Conducción Cardíaco , Humanos
5.
Sci Rep ; 10(1): 18906, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144668

RESUMEN

Cardiac automaticity is set by pacemaker activity of the sinus node (SAN). In addition to the ubiquitously expressed cardiac voltage-gated L-type Cav1.2 Ca2+ channel isoform, pacemaker cells within the SAN and the atrioventricular node co-express voltage-gated L-type Cav1.3 and T-type Cav3.1 Ca2+ channels (SAN-VGCCs). The role of SAN-VGCCs in automaticity is incompletely understood. We used knockout mice carrying individual genetic ablation of Cav1.3 (Cav1.3-/-) or Cav3.1 (Cav3.1-/-) channels and double mutant Cav1.3-/-/Cav3.1-/- mice expressing only Cav1.2 channels. We show that concomitant loss of SAN-VGCCs prevents physiological SAN automaticity, blocks impulse conduction and compromises ventricular rhythmicity. Coexpression of SAN-VGCCs is necessary for impulse formation in the central SAN. In mice lacking SAN-VGCCs, residual pacemaker activity is predominantly generated in peripheral nodal and extranodal sites by f-channels and TTX-sensitive Na+ channels. In beating SAN cells, ablation of SAN-VGCCs disrupted late diastolic local intracellular Ca2+ release, which demonstrates an important role for these channels in supporting the sarcoplasmic reticulum based "Ca2+ clock" mechanism during normal pacemaking. These data implicate an underappreciated role for co-expression of SAN-VGCCs in heart automaticity and define an integral role for these channels in mechanisms that control the heartbeat.


Asunto(s)
Nodo Atrioventricular/fisiopatología , Bradicardia/diagnóstico , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo T/genética , Nodo Sinoatrial/fisiopatología , Animales , Bradicardia/genética , Bradicardia/fisiopatología , Calcio/metabolismo , Modelos Animales de Enfermedad , Electrocardiografía , Frecuencia Cardíaca , Ratones , Ratones Noqueados , Retículo Sarcoplasmático/metabolismo
6.
Front Physiol ; 11: 809, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774307

RESUMEN

The rhythmic electrical activity of the heart's natural pacemaker, the sinoatrial node (SAN), determines cardiac beating rate (BR). SAN electrical activity is tightly controlled by multiple factors, including tissue stretch, which may contribute to adaptation of BR to changes in venous return. In most animals, including human, there is a robust increase in BR when the SAN is stretched. However, the chronotropic response to sustained stretch differs in mouse SAN, where it causes variable responses, including decreased BR. The reasons for this species difference are unclear. They are thought to relate to dissimilarities in SAN electrophysiology (particularly action potential morphology) between mouse and other species and to how these interact with subcellular stretch-activated mechanisms. Furthermore, species-related differences in structural and mechanical properties of the SAN may influence the chronotropic response to SAN stretch. Here we assess (i) how the BR response to sustained stretch of rabbit and mouse isolated SAN relates to tissue stiffness, (ii) whether structural differences could account for observed differences in BR responsiveness to stretch, and (iii) whether pharmacological modification of mouse SAN electrophysiology alters stretch-induced chronotropy. We found disparities in the relationship between SAN stiffness and the magnitude of the chronotropic response to stretch between rabbit and mouse along with differences in SAN collagen structure, alignment, and changes with stretch. We further observed that pharmacological modification to prolong mouse SAN action potential plateau duration rectified the direction of BR changes during sustained stretch, resulting in a positive chronotropic response akin to that of other species. Overall, our results suggest that structural, mechanical, and background electrophysiological properties of the SAN influence the chronotropic response to stretch. Improved insight into the biophysical determinants of stretch effects on SAN pacemaking is essential for a comprehensive understanding of SAN regulation with important implications for studies of SAN physiology and its dysfunction, such as in the aging and fibrotic heart.

7.
Pflugers Arch ; 472(8): 1103-1104, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32648124

RESUMEN

The above article was published online with an error in Fig. 1b. There is a doubled action potential at the far right of the left panel of the figure.

8.
Pflugers Arch ; 472(7): 817-830, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32601767

RESUMEN

The heart automaticity is a fundamental physiological function in vertebrates. The cardiac impulse is generated in the sinus node by a specialized population of spontaneously active myocytes known as "pacemaker cells." Failure in generating or conducting spontaneous activity induces dysfunction in cardiac automaticity. Several families of ion channels are involved in the generation and regulation of the heart automaticity. Among those, voltage-gated L-type Cav1.3 (α1D) and T-type Cav3.1 (α1G) Ca2+ channels play important roles in the spontaneous activity of pacemaker cells. Ca2+ channel channelopathies specifically affecting cardiac automaticity are considered rare. Recent research on familial disease has identified mutations in the Cav1.3-encoding CACNA1D gene that underlie congenital sinus node dysfunction and deafness (OMIM # 614896). In addition, both Cav1.3 and Cav3.1 channels have been identified as pathophysiological targets of sinus node dysfunction and heart block, caused by congenital autoimmune disease of the cardiac conduction system. The discovery of channelopathies linked to Cav1.3 and Cav3.1 channels underscores the importance of Ca2+ channels in the generation and regulation of heart's automaticity.


Asunto(s)
Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Canalopatías/genética , Canalopatías/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Frecuencia Cardíaca/genética , Humanos , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/patología
9.
Cell Calcium ; 87: 102167, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32028091

RESUMEN

Na/Ca exchange is the dominant calcium (Ca) efflux mechanism in cardiac myocytes. Although our knowledge of exchanger function (NCX1 in the heart) was originally established using biochemical and electrophysiological tools such as cardiac sarcolemmal vesicles and the giant patch technique [1-4], many advances in our understanding of the physiological/pathophysiological roles of NCX1 in the heart have been obtained using a suite of genetically modified mice. Early mouse studies focused on modification of expression levels of NCX1 in the ventricles, with transgenic overexpressors, global NCX1 knockout (KO) mice (which were embryonic lethal if homozygous), and finally ventricular-specific NCX1 KO [5-12]. We found, to our surprise, that ventricular cardiomyocytes lacking NCX1 can survive and function by engaging a clever set of adaptations to minimize Ca entry, while maintaining contractile function through an increase in excitation-contraction (EC) coupling gain [5,6,13]. Having studied ventricular NCX1 ablation in detail, we more recently focused on elucidating the role of NCX1 in the atria through altering NCX1 expression. Using a novel atrial-specific NCX1 KO mouse, we found unexpected changes in atrial cell morphology and calcium handling, together with dramatic alterations in the function of sinoatrial node (SAN) pacemaker activity. In this review, we will discuss these findings and their implications for cardiac disease.


Asunto(s)
Relojes Biológicos , Calcio/metabolismo , Acoplamiento Excitación-Contracción , Atrios Cardíacos/metabolismo , Nodo Sinoatrial/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Sodio/metabolismo , Animales , Humanos
10.
Front Physiol ; 11: 519382, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551824

RESUMEN

Background: Endurance athletes are prone to bradyarrhythmias, which in the long-term may underscore the increased incidence of pacemaker implantation reported in this population. Our previous work in rodent models has shown training-induced sinus bradycardia to be due to microRNA (miR)-mediated transcriptional remodeling of the HCN4 channel, leading to a reduction of the "funny" (I f) current in the sinoatrial node (SAN). Objective: To test if genetic ablation of G-protein-gated inwardly rectifying potassium channel, also known as I KACh channels prevents sinus bradycardia induced by intensive exercise training in mice. Methods: Control wild-type (WT) and mice lacking GIRK4 (Girk4 -/-), an integral subunit of I KACh were assigned to trained or sedentary groups. Mice in the trained group underwent 1-h exercise swimming twice a day for 28 days, 7 days per week. We performed electrocardiogram recordings and echocardiography in both groups at baseline, during and after the training period. At training cessation, mice were euthanized and SAN tissues were isolated for patch clamp recordings in isolated SAN cells and molecular profiling by quantitative PCR (qPCR) and western blotting. Results: At swimming cessation trained WT mice presented with a significantly lower resting HR that was reversible by acute I KACh block whereas Girk4 -/- mice failed to develop a training-induced sinus bradycardia. In line with HR reduction, action potential rate, density of I f, as well as of T- and L-type Ca2+ currents (I CaT and I CaL ) were significantly reduced only in SAN cells obtained from WT-trained mice. I f reduction in WT mice was concomitant with downregulation of HCN4 transcript and protein, attributable to increased expression of corresponding repressor microRNAs (miRs) whereas reduced I CaL in WT mice was associated with reduced Cav1.3 protein levels. Strikingly, I KACh ablation suppressed all training-induced molecular remodeling observed in WT mice. Conclusion: Genetic ablation of cardiac I KACh in mice prevents exercise-induced sinus bradycardia by suppressing training induced remodeling of inward currents I f, I CaT and I CaL due in part to the prevention of miR-mediated transcriptional remodeling of HCN4 and likely post transcriptional remodeling of Cav1.3. Strategies targeting cardiac I KACh may therefore represent an alternative to pacemaker implantation for bradyarrhythmias seen in some veteran athletes.

11.
Stem Cells ; 38(3): 352-368, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31648393

RESUMEN

Cardiac differentiation of embryonic stem cells (ESCs) can give rise to de novo chamber cardiomyocytes and nodal pacemaker cells. Compared with our understanding of direct differentiation toward atrial and ventricular myocytes, the mechanisms for nodal pacemaker cell commitment are not well understood. Taking a cue from the prominence of canonical Wnt signaling during cardiac pacemaker tissue development in chick embryos, we asked if modulations of Wnt signaling influence cardiac progenitors to bifurcate to either chamber cardiomyocytes or pacemaker cells. Omitting an exogenous Wnt inhibitor, which is routinely added to maximize cardiac myocyte yield during differentiation of mouse and human ESCs, led to increased yield of spontaneously beating cardiomyocytes with action potential properties similar to those of native sinoatrial node pacemaker cells. The pacemaker phenotype was accompanied by enhanced expression of genes and gene products that mark nodal pacemaker cells such as Hcn4, Tbx18, Tbx3, and Shox2. Addition of exogenous Wnt3a ligand, which activates canonical Wnt/ß-catenin signaling, increased the yield of pacemaker-like myocytes while reducing cTNT-positive pan-cardiac differentiation. Conversely, addition of inhibitors of Wnt/ß-catenin signaling led to increased chamber myocyte lineage development at the expense of pacemaker cell specification. The positive impact of canonical Wnt signaling on nodal pacemaker cell differentiation was evidenced in direct differentiation of two human ESC lines and human induced pluripotent stem cells. Our data identify the Wnt/ß-catenin pathway as a critical determinant of cardiac myocyte subtype commitment during ESC differentiation: endogenous Wnt signaling favors the pacemaker lineage, whereas its suppression promotes the chamber cardiomyocyte lineage.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Mesodermo/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Vía de Señalización Wnt/genética , Animales , Diferenciación Celular , Humanos , Ratones
12.
J Physiol ; 595(12): 3847-3865, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28346695

RESUMEN

KEY POINTS: Repolarizing currents through K+ channels are essential for proper sinoatrial node (SAN) pacemaking, but the influence of intracellular Ca2+ on repolarization in the SAN is uncertain. We identified all three isoforms of Ca2+ -activated small conductance K+ (SK) channels in the murine SAN. SK channel blockade slows repolarization and subsequent depolarization of SAN cells. In the atrial-specific Na+ /Ca2+ exchanger (NCX) knockout mouse, cellular Ca2+ accumulation during spontaneous SAN pacemaker activity produces intermittent hyperactivation of SK channels, leading to arrhythmic pauses alternating with bursts of pacing. These findings suggest that Ca2+ -sensitive SK channels can translate changes in cellular Ca2+ into a repolarizing current capable of modulating pacemaking. SK channels are a potential pharmacological target for modulating SAN rate or treating SAN dysfunction, particularly under conditions characterized by abnormal increases in diastolic Ca2+ . ABSTRACT: Small conductance K+ (SK) channels have been implicated as modulators of spontaneous depolarization and electrical conduction that may be involved in cardiac arrhythmia. However, neither their presence nor their contribution to sinoatrial node (SAN) pacemaker activity has been investigated. Using quantitative PCR (q-PCR), immunostaining and patch clamp recordings of membrane current and voltage, we identified all three SK isoforms (SK1, SK2 and SK3) in mouse SAN. Inhibition of SK channels with the specific blocker apamin prolonged action potentials (APs) in isolated SAN cells. Apamin also slowed diastolic depolarization and reduced pacemaker rate in isolated SAN cells and intact tissue. We investigated whether the Ca2+ -sensitive nature of SK channels could explain arrhythmic SAN pacemaker activity in the atrial-specific Na+ /Ca2+ exchange (NCX) knockout (KO) mouse, a model of cellular Ca2+ overload. SAN cells isolated from the NCX KO exhibited higher SK current than wildtype (WT) and apamin prolonged their APs. SK blockade partially suppressed the arrhythmic burst pacing pattern of intact NCX KO SAN tissue. We conclude that SK channels have demonstrable effects on SAN pacemaking in the mouse. Their Ca2+ -dependent activation translates changes in cellular Ca2+ into a repolarizing current capable of modulating regular pacemaking. This Ca2+ dependence also promotes abnormal automaticity when these channels are hyperactivated by elevated Ca2+ . We propose SK channels as a potential target for modulating SAN rate, and for treating patients affected by SAN dysfunction, particularly in the setting of Ca2+ overload.


Asunto(s)
Relojes Biológicos/fisiología , Calcio/metabolismo , Nodo Sinoatrial/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Apamina/farmacología , Relojes Biológicos/efectos de los fármacos , Femenino , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Masculino , Ratones , Ratones Noqueados , Isoformas de Proteínas/metabolismo , Nodo Sinoatrial/efectos de los fármacos
13.
Proc Natl Acad Sci U S A ; 113(7): E932-41, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831068

RESUMEN

Dysfunction of pacemaker activity in the sinoatrial node (SAN) underlies "sick sinus" syndrome (SSS), a common clinical condition characterized by abnormally low heart rate (bradycardia). If untreated, SSS carries potentially life-threatening symptoms, such as syncope and end-stage organ hypoperfusion. The only currently available therapy for SSS consists of electronic pacemaker implantation. Mice lacking L-type Cav1.3 Ca(2+) channels (Cav1.3(-/-)) recapitulate several symptoms of SSS in humans, including bradycardia and atrioventricular (AV) dysfunction (heart block). Here, we tested whether genetic ablation or pharmacological inhibition of the muscarinic-gated K(+) channel (IKACh) could rescue SSS and heart block in Cav1.3(-/-) mice. We found that genetic inactivation of IKACh abolished SSS symptoms in Cav1.3(-/-) mice without reducing the relative degree of heart rate regulation. Rescuing of SAN and AV dysfunction could be obtained also by pharmacological inhibition of IKACh either in Cav1.3(-/-) mice or following selective inhibition of Cav1.3-mediated L-type Ca(2+) (ICa,L) current in vivo. Ablation of IKACh prevented dysfunction of SAN pacemaker activity by allowing net inward current to flow during the diastolic depolarization phase under cholinergic activation. Our data suggest that patients affected by SSS and heart block may benefit from IKACh suppression achieved by gene therapy or selective pharmacological inhibition.


Asunto(s)
Canales de Calcio Tipo L/efectos de los fármacos , Proteínas de Unión al GTP/fisiología , Bloqueo Cardíaco/tratamiento farmacológico , Activación del Canal Iónico/fisiología , Síndrome del Seno Enfermo/tratamiento farmacológico , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/fisiología , Humanos , Ratones , Ratones Noqueados
14.
Proc Natl Acad Sci U S A ; 112(31): 9769-74, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195795

RESUMEN

In sinoatrial node (SAN) cells, electrogenic sodium-calcium exchange (NCX) is the dominant calcium (Ca) efflux mechanism. However, the role of NCX in the generation of SAN automaticity is controversial. To investigate the contribution of NCX to pacemaking in the SAN, we performed optical voltage mapping and high-speed 2D laser scanning confocal microscopy (LSCM) of Ca dynamics in an ex vivo intact SAN/atrial tissue preparation from atrial-specific NCX knockout (KO) mice. These mice lack P waves on electrocardiograms, and isolated NCX KO SAN cells are quiescent. Voltage mapping revealed disorganized and arrhythmic depolarizations within the NCX KO SAN that failed to propagate into the atria. LSCM revealed intermittent bursts of Ca transients. Bursts were accompanied by rising diastolic Ca, culminating in long pauses dominated by Ca waves. The L-type Ca channel agonist BayK8644 reduced the rate of Ca transients and inhibited burst generation in the NCX KO SAN whereas the Ca buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl ester) (BAPTA AM) did the opposite. These results suggest that cellular Ca accumulation hinders spontaneous depolarization in the NCX KO SAN, possibly by inhibiting L-type Ca currents. The funny current (If) blocker ivabradine also suppressed NCX KO SAN automaticity. We conclude that pacemaker activity is present in the NCX KO SAN, generated by a mechanism that depends upon If. However, the absence of NCX-mediated depolarization in combination with impaired Ca efflux results in intermittent bursts of pacemaker activity, reminiscent of human sinus node dysfunction and "tachy-brady" syndrome.


Asunto(s)
Potenciales de Acción , Relojes Biológicos , Nodo Sinoatrial/fisiología , Intercambiador de Sodio-Calcio/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Conexinas/metabolismo , Diástole , Estimulación Eléctrica , Femenino , Fibrosis , Espacio Intracelular/metabolismo , Masculino , Ratones Noqueados , Receptores Adrenérgicos beta/metabolismo
15.
Front Physiol ; 6: 19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25698974

RESUMEN

Pacemaker activity of automatic cardiac myocytes controls the heartbeat in everyday life. Cardiac automaticity is under the control of several neurotransmitters and hormones and is constantly regulated by the autonomic nervous system to match the physiological needs of the organism. Several classes of ion channels and proteins involved in intracellular Ca(2+) dynamics contribute to pacemaker activity. The functional role of voltage-gated calcium channels (VGCCs) in heart automaticity and impulse conduction has been matter of debate for 30 years. However, growing evidence shows that VGCCs are important regulators of the pacemaker mechanisms and play also a major role in atrio-ventricular impulse conduction. Incidentally, studies performed in genetically modified mice lacking L-type Cav1.3 (Cav1.3(-/-)) or T-type Cav3.1 (Cav3.1(-/-)) channels show that genetic inactivation of these channels strongly impacts pacemaking. In cardiac pacemaker cells, VGCCs activate at negative voltages at the beginning of the diastolic depolarization and importantly contribute to this phase by supplying inward current. Loss-of-function of these channels also impairs atrio-ventricular conduction. Furthermore, inactivation of Cav1.3 channels promotes also atrial fibrillation and flutter in knockout mice suggesting that these channels can play a role in stabilizing atrial rhythm. Genomic analysis demonstrated that Cav1.3 and Cav3.1 channels are widely expressed in pacemaker tissue of mice, rabbits and humans. Importantly, human diseases of pacemaker activity such as congenital bradycardia and heart block have been attributed to loss-of-function of Cav1.3 and Cav3.1 channels. In this article, we will review the current knowledge on the role of VGCCs in the generation and regulation of heart rate and rhythm. We will discuss also how loss of Ca(2+) entry through VGCCs could influence intracellular Ca(2+) handling and promote atrial arrhythmias.

16.
Nat Commun ; 5: 4664, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25144323

RESUMEN

The mechanisms underlying cardiac automaticity are still incompletely understood and controversial. Here we report the complete conditional and time-controlled silencing of the 'funny' current (If) by expression of a dominant-negative, non-conductive HCN4-channel subunit (hHCN4-AYA). Heart-specific If silencing caused altered [Ca(2+)]i release and Ca(2+) handling in the sinoatrial node, impaired pacemaker activity and symptoms reminiscent of severe human disease of pacemaking. The effects of If silencing critically depended on the activity of the autonomic nervous system. We were able to rescue the failure of impulse generation and conduction by additional genetic deletion of cardiac muscarinic G-protein-activated (GIRK4) channels in If-deficient mice without impairing heartbeat regulation. Our study establishes the role of f-channels in cardiac automaticity and indicates that arrhythmia related to HCN loss-of-function may be managed by pharmacological or genetic inhibition of GIRK4 channels, thus offering a new therapeutic strategy for the treatment of heart rhythm diseases.


Asunto(s)
Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Proteínas Musculares/genética , Canales de Potasio/genética , Animales , Arritmias Cardíacas/tratamiento farmacológico , Benzazepinas/farmacología , Señalización del Calcio/genética , Modelos Animales de Enfermedad , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ivabradina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Oocitos/fisiología , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Embarazo , Xenopus
17.
Pflugers Arch ; 466(4): 791-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24573175

RESUMEN

Cardiac automaticity is a fundamental physiological function in vertebrates. Heart rate is under the control of several neurotransmitters and hormones and is permanently adjusted by the autonomic nervous system to match the physiological demand of the organism. Several classes of ion channels and proteins involved in intracellular Ca(2+) handling contribute to pacemaker activity. Voltage-dependent T-type Ca(2+) channels are an integral part of the complex mechanism underlying pacemaking. T-type channels also contribute to impulse conduction in mice and humans. Strikingly, T-type channel isoforms are co-expressed in the cardiac conduction system with other ion channels that play a major role in pacemaking such as f- (HCN4) and L-type Cav1.3 channels. Pharmacologic inhibition of T-type channels reduces the spontaneous activity of isolated pacemaker myocytes of the sino-atrial node, the dominant heart rhythmogenic centre. Target inactivation of T-type Cav3.1 channels abolishes I Ca,T in both sino-atrial and atrioventricular myocytes and reduces the daily heart rate of freely moving mice. Cav3.1 channels contribute also to automaticity of the atrioventricular node and to ventricular escape rhythms, thereby stressing the importance of these channels in automaticity of the whole cardiac conduction system. Accordingly, loss-of-function of Cav3.1 channels contributes to severe form of congenital bradycardia and atrioventricular block in paediatric patients.


Asunto(s)
Nodo Atrioventricular/fisiología , Canales de Calcio Tipo T/fisiología , Frecuencia Cardíaca/fisiología , Nodo Sinoatrial/fisiología , Potenciales de Acción/fisiología , Animales , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatología , Síndrome de Brugada , Trastorno del Sistema de Conducción Cardíaco , Sistema de Conducción Cardíaco/anomalías , Sistema de Conducción Cardíaco/fisiología , Sistema de Conducción Cardíaco/fisiopatología , Humanos
18.
J Gen Physiol ; 142(2): 113-26, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23858001

RESUMEN

Parasympathetic regulation of sinoatrial node (SAN) pacemaker activity modulates multiple ion channels to temper heart rate. The functional role of the G-protein-activated K(+) current (IKACh) in the control of SAN pacemaking and heart rate is not completely understood. We have investigated the functional consequences of loss of IKACh in cholinergic regulation of pacemaker activity of SAN cells and in heart rate control under physiological situations mimicking the fight or flight response. We used knockout mice with loss of function of the Girk4 (Kir3.4) gene (Girk4(-/-) mice), which codes for an integral subunit of the cardiac IKACh channel. SAN pacemaker cells from Girk4(-/-) mice completely lacked IKACh. Loss of IKACh strongly reduced cholinergic regulation of pacemaker activity of SAN cells and isolated intact hearts. Telemetric recordings of electrocardiograms of freely moving mice showed that heart rate measured over a 24-h recording period was moderately increased (10%) in Girk4(-/-) animals. Although the relative extent of heart rate regulation of Girk4(-/-) mice was similar to that of wild-type animals, recovery of resting heart rate after stress, physical exercise, or pharmacological ß-adrenergic stimulation of SAN pacemaking was significantly delayed in Girk4(-/-) animals. We conclude that IKACh plays a critical role in the kinetics of heart rate recovery to resting levels after sympathetic stimulation or after direct ß-adrenergic stimulation of pacemaker activity. Our study thus uncovers a novel role for IKACh in SAN physiology and heart rate regulation.


Asunto(s)
Acetilcolina/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Frecuencia Cardíaca , Nodo Sinoatrial/fisiología , Potenciales de Acción , Animales , Electrocardiografía , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reperfusión Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Esfuerzo Físico , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/inervación , Estrés Fisiológico , Sistema Nervioso Simpático/fisiología
19.
Circulation ; 126(4): 392-401, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22711277

RESUMEN

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia is characterized by stress-triggered syncope and sudden death. Patients with catecholaminergic polymorphic ventricular tachycardia manifest sinoatrial node (SAN) dysfunction, the mechanisms of which remain unexplored. METHODS AND RESULTS: We investigated SAN [Ca(2+)](i) handling in mice carrying the catecholaminergic polymorphic ventricular tachycardia-linked mutation of ryanodine receptor (RyR2(R4496C)) and their wild-type (WT) littermates. In vivo telemetric recordings showed impaired SAN automaticity in RyR2(R4496C) mice after isoproterenol injection, analogous to what was observed in catecholaminergic polymorphic ventricular tachycardia patients after exercise. Pacemaker activity was explored by measuring spontaneous [Ca(2+)](i) transients in SAN cells within the intact SAN by confocal microscopy. RyR2(R4496C) SAN presented significantly slower pacemaker activity and impaired chronotropic response under ß-adrenergic stimulation, accompanied by the appearance of pauses (in spontaneous [Ca(2+)](i) transients and action potentials) in 75% of the cases. Ca(2+) spark frequency was increased by 2-fold in RyR2(R4496C) SAN. Whole-cell patch-clamp experiments performed on isolated RyR2(R4496C) SAN cells showed that L-type Ca(2+) current (I(Ca,L)) density was reduced by ≈50%, an effect blunted by internal Ca(2+) buffering. Isoproterenol dramatically increased the frequency of Ca(2+) sparks and waves by ≈5 and ≈10-fold, respectively. Interestingly, the sarcoplasmic reticulum Ca(2+) content was significantly reduced in RyR2(R4496C) SAN cells in the presence of isoproterenol, which may contribute to stopping the "Ca(2+) clock" rhythm generation, originating SAN pauses. CONCLUSION: The increased activity of RyR2(R4496C) in SAN leads to an unanticipated decrease in SAN automaticity by a Ca(2+)-dependent decrease of I(Ca,L) and sarcoplasmic reticulum Ca(2+) depletion during diastole, identifying subcellular pathophysiological alterations contributing to the SAN dysfunction in catecholaminergic polymorphic ventricular tachycardia patients.


Asunto(s)
Calcio/metabolismo , Mutación/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Nodo Sinoatrial/fisiopatología , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Agonistas Adrenérgicos beta/farmacología , Adulto , Anciano , Animales , Señalización del Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Ejercicio Físico , Femenino , Humanos , Técnicas In Vitro , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Persona de Mediana Edad , Técnicas de Placa-Clamp , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/patología , Taquicardia Ventricular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...