Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Foods ; 13(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39200527

RESUMEN

High pressure processing (HPP) is a non-thermal technology with emerging application within the fruit and vegetable sector. The impact of the enumeration agar on the recorded HPP inactivation of L. monocytogenes, Salmonella spp. and E. coli in banana-apple and apple purees was evaluated. Additionally, the HPP inactivation and sublethal injury was quantified in apple puree, considering the impact of acid exposure (24 h before HPP) and sampling time. Inoculated purees were pressurized at 300 MPa for 2 min. Enumeration was performed immediately and 24 h after HPP. HPP inactivation was 0.9-to-4.5-fold higher in apple than banana-apple puree. Compared with nutrient-rich media, selective agar enumeration overestimated the inactivation. HPP inactivation and sublethal injury of L. monocytogenes, Salmonella and E. coli was variable, mainly dependent on the exposure to acid and the sampling time. The 24 h-delayed enumeration slightly increased the inactivation. In apple puree, the CECT5947 strain of E. coli O157:H7 was the most piezo-resistant strain (1.5 log reduction), while L. monocytogenes Scott A was the most piezo-sensitive (6-log reduction when exposed to acid and sampled 24 h after HPP). All the studied factors should be taken into account when designing HPP treatments, performing product-specific validation studies and setting verification procedures.

2.
Food Res Int ; 188: 114439, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823829

RESUMEN

Tropane alkaloids (TAs) are secondary metabolites from weeds that can contaminate cereals and vegetables during harvest. Due to their toxicity, the Regulation (EC) 2023/915 sets maximum levels for atropine and scopolamine in cereal-based foods for infants containing millet, sorghum, buckwheat or their derived products. The aim of this study was to evaluate the effect of pH and temperature on the stability of TAs, as possible parameters in thermal processing to mitigate this chemical hazard in cereal-based infant food. The effect of pH (4 and 7) and temperature (80 °C and 100 °C) was assessed in buffer solutions. Also, treatment at 180 °C was performed in spiked and naturally incurred millet flour to assess the effect of high temperature, simulating cooking or drying, on the stability of TAs in the cereal matrix. The fate of 24 TAs was assessed by UHPLC-MS/MS. TAs showed high thermostability, although it was variable depending on the specific compound, pH, temperature and treatment time. In buffer solutions, higher degradation was found at 100 °C and pH 7. In spiked millet flour at 180 °C for 10 min, scopolamine and atropine contents decreased by 25 % and 22 %, similarly to other TAs which also showed a slow thermal degradation. Atropine, scopolamine, anisodamine, norscopolamine, scopine and scopoline were found in naturally contaminated millet flour. Interestingly, naturally incurred atropine was more thermostable than when spiked, showing a protective effect of the cereal matrix on TAs degradation. The present results highlight the need for an accurate monitorization of TAs in raw materials, as this chemical hazard may remain in infant cereal-based food even after intense thermal processing.


Asunto(s)
Grano Comestible , Contaminación de Alimentos , Alimentos Infantiles , Espectrometría de Masas en Tándem , Grano Comestible/química , Concentración de Iones de Hidrógeno , Alimentos Infantiles/análisis , Contaminación de Alimentos/prevención & control , Tropanos/química , Tropanos/análisis , Temperatura , Alcaloides/análisis , Humanos , Manipulación de Alimentos/métodos , Calor , Atropina/análisis , Atropina/química , Lactante , Cromatografía Líquida de Alta Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...