Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Lab Hematol ; 43(4): 724-731, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33393719

RESUMEN

INTRODUCTION: Minimal residual disease (MRD) is a cornerstone for stratification of upfront B-lymphoblastic leukemia (B-ALL) treatment protocols to decrease relapse risk. Although its detection by flow cytometry (FC) and real-time quantitative polymerase has clinical usefulness, evidence suggests that methods with increased sensitivity could lead to improved outcomes. The aim of this study was to develop an amplicon-based assay followed by high-throughput sequencing of the immunoglobulin heavy chain variable region for MRD detection in B-ALL. METHODS: We analyzed 84 samples, 27 from diagnosis, 5 from relapse, 40 from post-treatment samples, and 12 from healthy controls. RESULTS: Our assay was able to identify more neoplastic clones at diagnosis than Sanger sequencing including incomplete DJ rearrangements. From the 40 MRD samples evaluated 21 were positive by our new approach on high-throughput sequencing assay, but only 15 of these were positive by FC. The remaining 19 were negative by the two techniques. CONCLUSION: We have developed a novel approach on high-sensitive assay for MRD detection in B-ALL, which could add clinical value in the management of patients, especially in cases negative for MRD by FC.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina/genética , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasia Residual/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico
2.
Int J Biol Macromol ; 165(Pt A): 1482-1495, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33017605

RESUMEN

A chitosanase (CvCsn46) from Chromobacterium violaceum ATCC 12472 was produced in Escherichia coli, purified, and partially characterized. When subjected to denaturing polyacrylamide gel electrophoresis, the enzyme migrated as two protein bands (38 and 36 kDa apparent molecular masses), which were both identified as CvCsn46 by mass spectrometry. The enzyme hydrolyzed colloidal chitosan, with optimum catalytic activity at 50 °C, and two optimum pH values (at pH 6.0 and pH 11.0). The chitosanolytic activity of CvCsn46 was enhanced by some ions (Ca2+, Co2+, Cu2+, Sr2+, Mn2+) and DTT, whereas Fe2+, SDS and ß-mercaptoethanol completely inhibited its activity. CvCsn46 showed a non-Michaelis-Menten kinetics, characterized by a sigmoidal velocity curve (R2 = 0.9927) and a Hill coefficient of 3.95. ESI-MS analysis revealed that the hydrolytic action of CvCsn46 on colloidal chitosan generated a mixture of low molecular mass chitooligosaccharides, containing from 2 to 7 hexose residues, as well as D-glucosamine. The chitosan oligomers generated by CvCsn46 inhibited in vitro the mycelial growth of Lasiodiplodia theobromae, significantly reducing mycelium extension and inducing hyphal morphological alterations, as observed by scanning electron microscopy. CvCsn46 was characterized as a versatile biocatalyst that produces well-defined chitooligosaccharides, which have potential to control fungi that cause important crop diseases.


Asunto(s)
Antifúngicos/química , Quitina/análogos & derivados , Chromobacterium/genética , Glicósido Hidrolasas/genética , Secuencia de Aminoácidos/genética , Quitina/biosíntesis , Quitina/química , Quitina/genética , Quitosano/química , Chromobacterium/enzimología , Escherichia coli/genética , Glicósido Hidrolasas/biosíntesis , Glicósido Hidrolasas/química , Concentración de Iones de Hidrógeno , Hidrólisis , Peso Molecular , Oligosacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA