Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659771

RESUMEN

Major depressive disorder (MDD) is linked to impaired structural and synaptic plasticity in limbic brain regions. Astrocytes, which regulate synapses and are influenced by chronic stress, likely contribute to these changes. We analyzed astrocyte gene profiles in the nucleus accumbens (NAc) of humans with MDD and mice exposed to chronic stress. Htra1 , which encodes an astrocyte-secreted protease targeting the extracellular matrix (ECM), was significantly downregulated in the NAc of males but upregulated in females in both species. Manipulating Htra1 in mouse NAc astrocytes bidirectionally controlled stress susceptibility in a sex-specific manner. Such Htra1 manipulations also altered neuronal signaling and ECM structural integrity in NAc. These findings highlight astroglia and the brain's ECM as key mediators of sex-specific stress vulnerability, offering new approaches for MDD therapies.

3.
Nat Neurosci ; 26(7): 1229-1244, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291337

RESUMEN

The development of physical dependence and addiction disorders due to misuse of opioid analgesics is a major concern with pain therapeutics. We developed a mouse model of oxycodone exposure and subsequent withdrawal in the presence or absence of chronic neuropathic pain. Oxycodone withdrawal alone triggered robust gene expression adaptations in the nucleus accumbens, medial prefrontal cortex and ventral tegmental area, with numerous genes and pathways selectively affected by oxycodone withdrawal in mice with peripheral nerve injury. Pathway analysis predicted that histone deacetylase (HDAC) 1 is a top upstream regulator in opioid withdrawal in nucleus accumbens and medial prefrontal cortex. The novel HDAC1/HDAC2 inhibitor, Regenacy Brain Class I HDAC Inhibitor (RBC1HI), attenuated behavioral manifestations of oxycodone withdrawal, especially in mice with neuropathic pain. These findings suggest that inhibition of HDAC1/HDAC2 may provide an avenue for patients with chronic pain who are dependent on opioids to transition to non-opioid analgesics.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Ratones , Animales , Oxicodona/farmacología , Narcóticos , Histona Desacetilasa 1/metabolismo , Recompensa , Analgésicos Opioides/farmacología , Histona Desacetilasa 2/metabolismo
4.
Sci Adv ; 9(23): eadg8558, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294757

RESUMEN

Opioid use disorder (OUD) looms as one of the most severe medical crises facing society. More effective therapeutics will require a deeper understanding of molecular changes supporting drug-taking and relapse. Here, we develop a brain reward circuit-wide atlas of opioid-induced transcriptional regulation by combining RNA sequencing (RNA-seq) and heroin self-administration in male mice modeling multiple OUD-relevant conditions: acute heroin exposure, chronic heroin intake, context-induced drug-seeking following abstinence, and relapse. Bioinformatics analysis of this rich dataset identified numerous patterns of transcriptional regulation, with both region-specific and pan-circuit biological domains affected by heroin. Integration of RNA-seq data with OUD-relevant behavioral outcomes uncovered region-specific molecular changes and biological processes that predispose to OUD vulnerability. Comparisons with human OUD RNA-seq and genome-wide association study data revealed convergent molecular abnormalities and gene candidates with high therapeutic potential. These studies outline molecular reprogramming underlying OUD and provide a foundational resource for future investigations into mechanisms and treatment strategies.


Asunto(s)
Heroína , Trastornos Relacionados con Opioides , Humanos , Ratones , Masculino , Animales , Heroína/efectos adversos , Estudio de Asociación del Genoma Completo , Encéfalo , Recompensa , Recurrencia
5.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214877

RESUMEN

Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling, and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice exposed to early life stress (ELS) or to chronic social defeat stress (CSDS) in adulthood displayed increased enrichment of H3K27me1, and transient decreases in H3K27me2, in the nucleus accumbens (NAc), a key brain-reward region. Stress induction of H3K27me1 was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which is induced by chronic stress and controls H3K27 methylation patterns. Overexpression of the VEFS domain led to social, emotional, and cognitive abnormalities, and altered excitability of NAc D1 mediums spiny neurons. Together, we describe a novel function of H3K27me1 in brain and demonstrate its role as a "chromatin scar" that mediates lifelong stress susceptibility.

6.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36711574

RESUMEN

Opioid use disorder (OUD) looms as one of the most severe medical crises currently facing society. More effective therapeutics for OUD requires in-depth understanding of molecular changes supporting drug-taking and relapse. Recent efforts have helped advance these aims, but studies have been limited in number and scope. Here, we develop a brain reward circuit-wide atlas of opioid-induced transcriptional regulation by combining RNA sequencing (RNAseq) and heroin self-administration in male mice modeling multiple OUD-relevant conditions: acute heroin exposure, chronic heroin intake, context-induced drug-seeking following prolonged abstinence, and heroin-primed drug-seeking (i.e., "relapse"). Bioinformatics analysis of this rich dataset identified numerous patterns of molecular changes, transcriptional regulation, brain-region-specific involvement in various aspects of OUD, and both region-specific and pan-circuit biological domains affected by heroin. Integrating RNAseq data with behavioral outcomes using factor analysis to generate an "addiction index" uncovered novel roles for particular brain regions in promoting addiction-relevant behavior, and implicated multi-regional changes in affected genes and biological processes. Comparisons with RNAseq and genome-wide association studies from humans with OUD reveal convergent molecular regulation that are implicated in drug-taking and relapse, and point to novel gene candidates with high therapeutic potential for OUD. These results outline broad molecular reprogramming that may directly promote the development and maintenance of OUD, and provide a foundational resource to the field for future research into OUD mechanisms and treatment strategies.

7.
Mol Pharmacol ; 103(1): 1-8, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36310031

RESUMEN

Opioid analgesics exert their therapeutic and adverse effects by activating µ opioid receptors (MOPR); however, functional responses to MOPR activation are modulated by distinct signal transduction complexes within the brain. The ventrolateral periaqueductal gray (vlPAG) plays a critical role in modulation of nociception and analgesia, but the exact intracellular pathways associated with opioid responses in this region are not fully understood. We previously showed that knockout of the signal transduction modulator Regulator of G protein Signaling z1 (RGSz1) enhanced analgesic responses to opioids, whereas it decreased the rewarding efficacy of morphine. Here, we applied viral mediated gene transfer methodology and delivered adeno-associated virus (AAV) expressing Cre recombinase to the vlPAG of RGSz1fl\fl mice to demonstrate that downregulation of RGSz1 in this region decreases sensitivity to morphine in the place preference paradigm, under pain-free as well as neuropathic pain states. We also used retrograde viral vectors along with flippase-dependent Cre vectors to conditionally downregulate RGSz1 in vlPAG projections to the ventral tegmental area (VTA) and show that downregulation of RGSz1 prevents the development of place conditioning to low morphine doses. Consistent with the role for RGSz1 as a negative modulator of MOPR activity, RGSz1KO enhances opioid-induced cAMP inhibition in periaqueductal gray (PAG) membranes. Furthermore, using a new generation of bioluminescence resonance energy transfer (BRET) sensors, we demonstrate that RGSz1 modulates Gαz but not other Gαi family subunits and selectively impedes MOPR-mediated Gαz signaling events invoked by morphine and other opioids. Our work highlights a regional and circuit-specific role of the G protein-signaling modulator RGSz1 in morphine reward, providing insights on midbrain intracellular pathways that control addiction-related behaviors. SIGNIFICANCE STATEMENT: This study used advanced genetic mouse models to highlight the role of the signal transduction modulator named RGSz1 in responses to clinically used opioid analgesics. We show that RGSz1 controls the rewarding efficacy of opioids by actions in ventrolateral periaqueductal gray projections to the ventral tegmental area, a key component of the midbrain dopamine pathway. These studies highlight novel mechanisms by which pain-modulating structures control the rewarding efficacy of opioids.


Asunto(s)
Analgésicos Opioides , Morfina , Ratones , Animales , Morfina/farmacología , Morfina/metabolismo , Analgésicos Opioides/farmacología , Analgésicos Opioides/metabolismo , Sustancia Gris Periacueductal/metabolismo , Transducción de Señal , Proteínas de Unión al GTP/metabolismo , Recompensa , Receptores Opioides mu/metabolismo
8.
Sci Adv ; 8(48): eabn9494, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36449610

RESUMEN

Women suffer from depression at twice the rate of men, but the underlying molecular mechanisms are poorly understood. Here, we identify marked baseline sex differences in the expression of long noncoding RNAs (lncRNAs), a class of regulatory transcripts, in human postmortem brain tissue that are profoundly lost in depression. One such human lncRNA, RP11-298D21.1 (which we termed FEDORA), is enriched in oligodendrocytes and neurons and up-regulated in the prefrontal cortex (PFC) of depressed females only. We found that virally expressing FEDORA selectively either in neurons or in oligodendrocytes of PFC promoted depression-like behavioral abnormalities in female mice only, changes associated with cell type-specific regulation of synaptic properties, myelin thickness, and gene expression. We also found that blood FEDORA levels have diagnostic implications for depressed women and are associated with clinical response to ketamine. These findings demonstrate the important role played by lncRNAs, and FEDORA in particular, in shaping the sex-specific landscape of the brain and contributing to sex differences in depression.

9.
Biol Psychiatry ; 92(11): 895-906, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182529

RESUMEN

BACKGROUND: Social experiences influence susceptibility to substance use disorder. The adolescent period is associated with the development of social reward and is exceptionally sensitive to disruptions to reward-associated behaviors by social experiences. Social isolation (SI) during adolescence alters anxiety- and reward-related behaviors in adult males, but little is known about females. The medial amygdala (meA) is a likely candidate for the modulation of social influence on drug reward because it regulates social reward, develops during adolescence, and is sensitive to social stress. However, little is known regarding how the meA responds to drugs of abuse. METHODS: We used adolescent SI coupled with RNA sequencing to better understand the molecular mechanisms underlying meA regulation of social influence on reward. RESULTS: We show that SI in adolescence, a well-established preclinical model for addiction susceptibility, enhances preference for cocaine in male but not in female mice and alters cocaine-induced protein and transcriptional profiles within the adult meA particularly in males. To determine whether transcriptional mechanisms within the meA are important for these behavioral effects, we manipulated Crym expression, a sex-specific key driver gene identified through differential gene expression and coexpression network analyses, specifically in meA neurons. Overexpression of Crym, but not another key driver that did not meet our sex-specific criteria, recapitulated the behavioral and transcriptional effects of adolescent SI. CONCLUSIONS: These results show that the meA is essential for modulating the sex-specific effects of social experience on drug reward and establish Crym as a critical mediator of sex-specific behavioral and transcriptional plasticity.


Asunto(s)
Cocaína , Animales , Masculino , Femenino , Ratones , Cocaína/farmacología , Cocaína/metabolismo , Cristalinas mu , Recompensa , Neuronas/metabolismo , Amígdala del Cerebelo/metabolismo
10.
Mol Psychiatry ; 27(11): 4536-4549, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35902629

RESUMEN

Major depressive disorder (MDD) is the leading cause of disability worldwide. There is an urgent need for objective biomarkers to diagnose this highly heterogeneous syndrome, assign treatment, and evaluate treatment response and prognosis. MicroRNAs (miRNAs) are short non-coding RNAs, which are detected in body fluids that have emerged as potential biomarkers of many disease conditions. The present study explored the potential use of miRNAs as biomarkers for MDD and its treatment. We profiled the expression levels of circulating blood miRNAs from mice that were collected before and after exposure to chronic social defeat stress (CSDS), an extensively validated mouse model used to study depression, as well as after either repeated imipramine or single-dose ketamine treatment. We observed robust differences in blood miRNA signatures between stress-resilient and stress-susceptible mice after an incubation period, but not immediately after exposure to the stress. Furthermore, ketamine treatment was more effective than imipramine at re-establishing baseline miRNA expression levels, but only in mice that responded behaviorally to the drug. We identified the red blood cell-specific miR-144-3p as a candidate biomarker to aid depression diagnosis and predict ketamine treatment response in stress-susceptible mice and MDD patients. Lastly, we demonstrate that systemic knockdown of miR-144-3p, via subcutaneous administration of a specific antagomir, is sufficient to reduce the depression-related phenotype in stress-susceptible mice. RNA-sequencing analysis of blood after such miR-144-3p knockdown revealed a blunted transcriptional stress signature as well. These findings identify miR-144-3p as a novel target for diagnosis of MDD as well as for antidepressant treatment, and enhance our understanding of epigenetic processes associated with depression.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , MicroARNs , Ratones , Animales , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , MicroARNs/metabolismo , Biomarcadores , Epigénesis Genética , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ketamina/farmacología , Ketamina/uso terapéutico
11.
Biol Psychiatry ; 91(1): 81-91, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33896623

RESUMEN

BACKGROUND: Major depressive disorder is a pervasive and debilitating syndrome characterized by mood disturbances, anhedonia, and alterations in cognition. While the prevalence of major depressive disorder is twice as high for women as men, little is known about the molecular mechanisms that drive sex differences in depression susceptibility. METHODS: We discovered that SLIT1, a secreted protein essential for axonal navigation and molecular guidance during development, is downregulated in the adult ventromedial prefrontal cortex (vmPFC) of women with depression compared with healthy control subjects, but not in men with depression. This sex-specific downregulation of Slit1 was also observed in the vmPFC of mice exposed to chronic variable stress. To identify a causal, sex-specific role for SLIT1 in depression-related behavioral abnormalities, we performed knockdown (KD) of Slit1 expression in the vmPFC of male and female mice. RESULTS: When combined with stress exposure, vmPFC Slit1 KD reflected the human condition by inducing a sex-specific increase in anxiety- and depression-related behaviors. Furthermore, we found that vmPFC Slit1 KD decreased the dendritic arborization of vmPFC pyramidal neurons and decreased the excitability of the neurons in female mice, effects not observed in males. RNA sequencing analysis of the vmPFC after Slit1 KD in female mice revealed an augmented transcriptional stress signature. CONCLUSIONS: Together, our findings establish a crucial role for SLIT1 in regulating neurophysiological and transcriptional responses to stress within the female vmPFC and provide mechanistic insight into novel signaling pathways and molecular factors influencing sex differences in depression susceptibility.


Asunto(s)
Trastorno Depresivo Mayor , Anhedonia , Animales , Ansiedad , Femenino , Masculino , Ratones , Corteza Prefrontal , Caracteres Sexuales
13.
Nat Neurosci ; 24(5): 667-676, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33723435

RESUMEN

Animals susceptible to chronic social defeat stress (CSDS) exhibit depression-related behaviors, with aberrant transcription across several limbic brain regions, most notably in the nucleus accumbens (NAc). Early life stress (ELS) promotes susceptibility to CSDS in adulthood, but associated enduring changes in transcriptional control mechanisms in the NAc have not yet been investigated. In this study, we examined long-lasting changes to histone modifications in the NAc of male and female mice exposed to ELS. Dimethylation of lysine 79 of histone H3 (H3K79me2) and the enzymes (DOT1L and KDM2B) that control this modification are enriched in D2-type medium spiny neurons and are shown to be crucial for the expression of ELS-induced stress susceptibility. We mapped the site-specific regulation of this histone mark genome wide to reveal the transcriptional networks it modulates. Finally, systemic delivery of a small molecule inhibitor of DOT1L reversed ELS-induced behavioral deficits, indicating the clinical relevance of this epigenetic mechanism.


Asunto(s)
Histona Demetilasas/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Estrés Psicológico/metabolismo , Animales , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Ratones
14.
Biol Psychiatry ; 89(9): 911-919, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33384174

RESUMEN

BACKGROUND: Adolescence is a period of increased vulnerability to psychiatric disorders, including depression. Discovering novel biomarkers to identify individuals who are at high risk is very much needed. Our previous work shows that the microRNA miR-218 mediates susceptibility to stress and depression in adulthood by targeting the netrin-1 guidance cue receptor gene Dcc in the medial prefrontal cortex (mPFC). METHODS: Here, we investigated whether miR-218 regulates Dcc expression in adolescence and could serve as an early predictor of lifetime stress vulnerability in male mice. RESULTS: miR-218 expression in the mPFC increases from early adolescence to adulthood and correlates negatively with Dcc levels. In blood, postnatal miR-218 expression parallels changes occurring in the mPFC. Notably, circulating miR-218 levels in adolescence associate with vulnerability to social defeat stress in adulthood, with high levels associated with social avoidance severity. Indeed, downregulation of miR-218 in the mPFC in adolescence promotes resilience to stress in adulthood. CONCLUSIONS: miR-218 expression in adolescence may serve both as a marker of risk and as a target for early interventions.


Asunto(s)
MicroARNs , Corteza Prefrontal , Animales , Regulación hacia Abajo , Masculino , Ratones , MicroARNs/genética , Conducta Social , Estrés Psicológico/genética
15.
Mol Psychiatry ; 26(6): 1860-1879, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32161361

RESUMEN

Stress promotes negative affective states, which include anhedonia and passive coping. While these features are in part mediated by neuroadaptations in brain reward circuitry, a comprehensive framework of how stress-induced negative affect may be encoded within key nodes of this circuit is lacking. Here, we show in a mouse model for stress-induced anhedonia and passive coping that these phenomena are associated with increased synaptic strength of ventral hippocampus (VH) excitatory synapses onto D1 medium spiny neurons (D1-MSNs) in the nucleus accumbens medial shell (NAcmSh), and with lateral hypothalamus (LH)-projecting D1-MSN hyperexcitability mediated by decreased inwardly rectifying potassium channel (IRK) function. Stress-induced negative affective states are prevented by depotentiation of VH to NAcmSh synapses, restoring Kir2.1 function in D1R-MSNs, or disrupting co-participation of these synaptic and intrinsic adaptations in D1-MSNs. In conclusion, our data provide strong evidence for a disynaptic pathway controlling maladaptive emotional behavior.


Asunto(s)
Anhedonia , Receptores de Dopamina D1 , Adaptación Psicológica , Animales , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo
16.
Nature ; 590(7845): 315-319, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33328636

RESUMEN

Effective pharmacotherapy for major depressive disorder remains a major challenge, as more than 30% of patients are resistant to the first line of treatment (selective serotonin reuptake inhibitors)1. Sub-anaesthetic doses of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist2,3, provide rapid and long-lasting antidepressant effects in these patients4-6, but the molecular mechanism of these effects remains unclear7,8. Ketamine has been proposed to exert its antidepressant effects through its metabolite (2R,6R)-hydroxynorketamine ((2R,6R)-HNK)9. The antidepressant effects of ketamine and (2R,6R)-HNK in rodents require activation of the mTORC1 kinase10,11. mTORC1 controls various neuronal functions12, particularly through cap-dependent initiation of mRNA translation via the phosphorylation and inactivation of eukaryotic initiation factor 4E-binding proteins (4E-BPs)13. Here we show that 4E-BP1 and 4E-BP2 are key effectors of the antidepressant activity of ketamine and (2R,6R)-HNK, and that ketamine-induced hippocampal synaptic plasticity depends on 4E-BP2 and, to a lesser extent, 4E-BP1. It has been hypothesized that ketamine activates mTORC1-4E-BP signalling in pyramidal excitatory cells of the cortex8,14. To test this hypothesis, we studied the behavioural response to ketamine and (2R,6R)-HNK in mice lacking 4E-BPs in either excitatory or inhibitory neurons. The antidepressant activity of the drugs is mediated by 4E-BP2 in excitatory neurons, and 4E-BP1 and 4E-BP2 in inhibitory neurons. Notably, genetic deletion of 4E-BP2 in inhibitory neurons induced a reduction in baseline immobility in the forced swim test, mimicking an antidepressant effect. Deletion of 4E-BP2 specifically in inhibitory neurons also prevented the ketamine-induced increase in hippocampal excitatory neurotransmission, and this effect concurred with the inability of ketamine to induce a long-lasting decrease in inhibitory neurotransmission. Overall, our data show that 4E-BPs are central to the antidepressant activity of ketamine.


Asunto(s)
Antidepresivos/farmacología , Factor 4E Eucariótico de Iniciación/metabolismo , Ketamina/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ketamina/análogos & derivados , Ketamina/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mutación , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Neuronas/clasificación , Neuronas/citología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Transmisión Sináptica/efectos de los fármacos
17.
Front Cell Dev Biol ; 8: 487, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714924

RESUMEN

The fine arrangement of neuronal connectivity during development involves the coordinated action of guidance cues and their receptors. In adolescence, the dopamine circuitry is still developing, with mesolimbic dopamine axons undergoing target-recognition events in the nucleus accumbens (NAcc), while mesocortical projections continue to grow toward the prefrontal cortex (PFC) until adulthood. This segregation of mesolimbic versus mesocortical dopamine pathways is mediated by the guidance cue receptor DCC, which signals dopamine axons intended to innervate the NAcc to recognize this region as their final target. Whether DCC-dependent mesolimbic dopamine axon targeting in adolescence requires the action of its ligand, Netrin-1, is unknown. Here we combined shRNA strategies, quantitative analysis of pre- and post-synaptic markers of neuronal connectivity, and pharmacological manipulations to address this question. Similar to DCC levels in the ventral tegmental area, Netrin-1 expression in the NAcc is dynamic across postnatal life, transitioning from high to low expression across adolescence. Silencing Netrin-1 in the NAcc in adolescence results in an increase in the expanse of the dopamine input to the PFC in adulthood, with a corresponding increase in the number of presynaptic dopamine sites. This manipulation also results in altered dendritic spine density and morphology of medium spiny neurons in the NAcc in adulthood and in reduced sensitivity to the behavioral activating effects of the stimulant drug of abuse, amphetamine. These cellular and behavioral effects mirror those induced by Dcc haploinsufficiency within dopamine neurons in adolescence. Dopamine targeting in adolescence requires the complementary interaction between DCC receptors in mesolimbic dopamine axons and Netrin-1 in the NAcc. Factors regulating either DCC or Netrin-1 in adolescence can disrupt mesocorticolimbic dopamine development, rendering vulnerability or protection to phenotypes associated with psychiatric disorders.

18.
Biol Psychiatry ; 88(8): 611-624, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32593422

RESUMEN

The Netrin-1/DCC guidance cue pathway plays a critical role in guiding growing axons toward the prefrontal cortex during adolescence and in the maturational organization and adult plasticity of prefrontal cortex connectivity. In this review, we put forward the idea that alterations in prefrontal cortex architecture and function, which are intrinsically linked to the development of major depressive disorder, originate in part from the dysregulation of the Netrin-1/DCC pathway by a mechanism that involves microRNA-218. We discuss evidence derived from mouse models of stress and from human postmortem brain and genome-wide association studies indicating an association between the Netrin-1/DCC pathway and major depressive disorder. We propose a potential role of circulating microRNA-218 as a biomarker of stress vulnerability and major depressive disorder.


Asunto(s)
Trastorno Depresivo Mayor , MicroARNs , Axones , Señales (Psicología) , Receptor DCC/genética , Depresión , Trastorno Depresivo Mayor/genética , Estudio de Asociación del Genoma Completo , Humanos , Netrina-1 , Receptores de Superficie Celular , Proteínas Supresoras de Tumor/genética
19.
Neuron ; 106(6): 912-926.e5, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32304628

RESUMEN

Depression is a common disorder that affects women at twice the rate of men. Here, we report that long non-coding RNAs (lncRNAs), a recently discovered class of regulatory transcripts, represent about one-third of the differentially expressed genes in the brains of depressed humans and display complex region- and sex-specific patterns of regulation. We identified the primate-specific, neuronal-enriched gene LINC00473 as downregulated in prefrontal cortex (PFC) of depressed females but not males. Using viral-mediated gene transfer to express LINC00473 in adult mouse PFC neurons, we mirrored the human sex-specific phenotype by inducing stress resilience solely in female mice. This sex-specific phenotype was accompanied by changes in synaptic function and gene expression selectively in female mice and, along with studies of human neuron-like cells in culture, implicates LINC00473 as a CREB effector. Together, our studies identify LINC00473 as a female-specific driver of stress resilience that is aberrant in female depression.


Asunto(s)
Trastorno Depresivo Mayor/genética , Corteza Prefrontal/metabolismo , ARN Largo no Codificante/genética , Resiliencia Psicológica , Estrés Psicológico/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Conducta Animal , Depresión/genética , Depresión/metabolismo , Trastorno Depresivo Mayor/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Neuronas/metabolismo , ARN Largo no Codificante/metabolismo , RNA-Seq , Factores Sexuales , Estrés Psicológico/metabolismo , Adulto Joven
20.
Mol Psychiatry ; 25(5): 951-964, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-30980043

RESUMEN

Low miR-218 expression in the medial prefrontal cortex (mPFC) is a consistent trait of depression. Here we assessed whether miR-218 in the mPFC confers resilience or susceptibility to depression-like behaviors in adult mice, using the chronic social defeat stress (CSDS) model of depression. We also investigated whether stress-induced variations of miR-218 expression in the mPFC can be detected in blood. We find that downregulation of miR-218 in the mPFC increases susceptibility to a single session of social defeat, whereas overexpression of miR-218 selectively in mPFC pyramidal neurons promotes resilience to CSDS and prevents stress-induced morphological alterations to those neurons. After CSDS, susceptible mice have low levels of miR-218 in blood, as compared with control or resilient groups. We show further that upregulation and downregulation of miR-218 levels specifically in the mPFC correlate with miR-218 expression in blood. Our results suggest that miR-218 in the adult mPFC might function as a molecular switch that determines susceptibility vs. resilience to chronic stress, and that stress-induced variations in mPFC levels of miR-218 could be detected in blood. We propose that blood expression of miR-218 might serve as potential readout of vulnerability to stress and as a proxy of mPFC function.


Asunto(s)
MicroARNs/biosíntesis , Derrota Social , Estrés Psicológico/genética , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Regulación hacia Abajo , Masculino , Ratones , MicroARNs/sangre , Corteza Prefrontal/metabolismo , Estrés Psicológico/sangre , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA