Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(7): 114447, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38963761

RESUMEN

Obesity and type 2 diabetes cause a loss in brown adipose tissue (BAT) activity, but the molecular mechanisms that drive BAT cell remodeling remain largely unexplored. Using a multilayered approach, we comprehensively mapped a reorganization in BAT cells. We uncovered a subset of macrophages as lipid-associated macrophages (LAMs), which were massively increased in genetic and dietary model of BAT expansion. LAMs participate in this scenario by capturing extracellular vesicles carrying damaged lipids and mitochondria released from metabolically stressed brown adipocytes. CD36 scavenger receptor drove LAM phenotype, and CD36-deficient LAMs were able to increase brown fat genes in adipocytes. LAMs released transforming growth factor ß1 (TGF-ß1), which promoted the loss of brown adipocyte identity through aldehyde dehydrogenase 1 family member A1 (Aldh1a1) induction. These findings unfold cell dynamic changes in BAT during obesity and identify LAMs as key responders to tissue metabolic stress and drivers of loss of brown adipocyte identity.

2.
STAR Protoc ; 5(3): 103161, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38943650

RESUMEN

Brown adipose tissue (BAT) is mitochondria rich, enabling high oxidative metabolism for non-shivering thermogenesis. The release of large/small extracellular vesicles (EVs) containing mitochondria or mitochondrial fragments, termed mito-EVs, may support mitochondrial quality control or intercellular communication. We present a protocol to isolate and characterize mito-EVs. We detail steps for BAT processing, cell debris removal, differential centrifugation (dC), and mito-EV analysis by flow cytometry and immunoblotting assays. For complete details on the use and execution of this protocol, please refer to Rosina et al.1.

3.
Cell Metab ; 34(4): 533-548.e12, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35305295

RESUMEN

Recent findings have demonstrated that mitochondria can be transferred between cells to control metabolic homeostasis. Although the mitochondria of brown adipocytes comprise a large component of the cell volume and undergo reorganization to sustain thermogenesis, it remains unclear whether an intercellular mitochondrial transfer occurs in brown adipose tissue (BAT) and regulates adaptive thermogenesis. Herein, we demonstrated that thermogenically stressed brown adipocytes release extracellular vesicles (EVs) that contain oxidatively damaged mitochondrial parts to avoid failure of the thermogenic program. When re-uptaken by parental brown adipocytes, mitochondria-derived EVs reduced peroxisome proliferator-activated receptor-γ signaling and the levels of mitochondrial proteins, including UCP1. Their removal via the phagocytic activity of BAT-resident macrophages is instrumental in preserving BAT physiology. Depletion of macrophages in vivo causes the abnormal accumulation of extracellular mitochondrial vesicles in BAT, impairing the thermogenic response to cold exposure. These findings reveal a homeostatic role of tissue-resident macrophages in the mitochondrial quality control of BAT.


Asunto(s)
Tejido Adiposo Pardo , Termogénesis , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Termogénesis/fisiología , Proteína Desacopladora 1/metabolismo
4.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613691

RESUMEN

Cancer cells may acquire resistance to stress signals and reprogram metabolism to meet the energetic demands to support their high proliferation rate and avoid death. Hence, targeting nutrient dependencies of cancer cells has been suggested as a promising anti-cancer strategy. We explored the possibility of killing breast cancer (BC) cells by modifying nutrient availability. We used in vitro models of BC (MCF7 and MDA-MB-231) that were maintained with a low amount of sulfur amino acids (SAAs) and a high amount of oxidizable polyunsatured fatty acids (PUFAs). Treatment with anti-apoptotic, anti-ferroptotic and antioxidant drugs were used to determine the modality of cell death. We reproduced these conditions in vivo by feeding BC-bearing mice with a diet poor in proteins and SAAs and rich in PUFAs (LSAA/HPUFA). Western blot analysis, qPCR and histological analyses were used to assess the anti-cancer effects and the molecular pathways involved. We found that BC cells underwent oxidative damage to DNA and proteins and both apoptosis and ferroptosis were induced. Along with caspases-mediated PARP1 cleavage, we found a lowering of the GSH-GPX4 system and an increase of lipid peroxides. A LSAA/HPUFA diet reduced tumor mass and its vascularization and immune cell infiltration, and induced apoptosis and ferroptotic hallmarks. Furthermore, mitochondrial mass was found to be increased, and the buffering of mitochondrial reactive oxygen species limited GPX4 reduction and DNA damage. Our results suggest that administration of custom diets, targeting the dependency of cancer cells on certain nutrients, can represent a promising complementary option for anti-cancer therapy.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Dieta , Animales , Ratones , Muerte Celular , Ácidos Grasos/farmacología , Ácidos Grasos Insaturados/farmacología , Peroxidación de Lípido , Peróxidos Lipídicos , Células MCF-7 , Células MDA-MB-231 , Humanos , Neoplasias de la Mama/patología
5.
Biomolecules ; 11(8)2021 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-34439837

RESUMEN

Repeated mechanical stress causes injuries in the adult skeletal muscle that need to be repaired. Although muscle regeneration is a highly efficient process, it fails in some pathological conditions, compromising tissue functionality. This may be caused by aberrant cell-cell communication, resulting in the deposition of fibrotic and adipose infiltrates. Here, we investigate in vivo changes in the profile of skeletal muscle secretome during the regeneration process to suggest new targetable regulatory circuits whose failure may lead to tissue degeneration in pathological conditions. We describe the kinetic variation of expression levels of 76 secreted proteins during the regeneration process. In addition, we profile the gene expression of immune cells, endothelial cells, satellite cells, and fibro-adipogenic progenitors. This analysis allowed us to annotate each cell-type with the cytokines and receptors they have the potential to synthetize, thus making it possible to draw a cell-cell interaction map. We next selected 12 cytokines whose receptors are expressed in FAPs and tested their ability to modulate FAP adipogenesis and proliferation. We observed that IL1α and IL1ß potently inhibit FAP adipogenesis, while EGF and BTC notably promote FAP proliferation. In addition, we characterized the cross-talk mediated by extracellular vesicles (EVs). We first monitored the modulation of muscle EV cargo during tissue regeneration. Using a single-vesicle flow cytometry approach, we observed that EVs differentially affect the uptake of RNA and proteins into their lumen. We also investigated the EV capability to interact with SCs and FAPs and to modulate their proliferation and differentiation. We conclude that both cytokines and EVs secreted during muscle regeneration have the potential to modulate adipogenic differentiation of FAPs. The results of our approach provide a system-wide picture of mechanisms that control cell fate during the regeneration process in the muscle niche.


Asunto(s)
Adipogénesis/genética , Vesículas Extracelulares/metabolismo , Interleucina-1alfa/genética , Interleucina-1beta/genética , Músculo Esquelético/efectos de los fármacos , Regeneración/genética , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Cardiotoxinas/toxicidad , Comunicación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocinas/clasificación , Citocinas/genética , Citocinas/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Vesículas Extracelulares/química , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Proteoma/clasificación , Proteoma/genética , Proteoma/metabolismo , Regeneración/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
6.
Cells ; 10(1)2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430027

RESUMEN

Radiation therapy is one of the most effective methods of tumor eradication; however, in some forms of neuroblastoma, radiation can increase the risk of secondary neoplasms, due to the ability of irradiated cells to transmit pro-survival signals to non-irradiated cells through vesicle secretion. The aims of this study were to characterize the vesicles released by the human neuroblastoma cell line SH-SY5Y following X-ray radiations and their ability to increase invasiveness in non-irradiated SH-SY5Y cells. We first purified the extracellular vesicles released by the SH-SY5Y cells following X-rays, and then determined their total amount, dimensions, membrane protein composition, and cellular uptake. We also examined the effects of these extracellular vesicles on viability, migration, and DNA damage in recipient SH-SY5Y cells. We found that exposure to X-rays increased the release of extracellular vesicles and altered their protein composition. These vesicles were readily uptaken by non-irradiated cells, inducing an increase in viability, migration, and radio-resistance. The same results were obtained in an MYCN-amplified SK-N-BE cell line. Our study demonstrates that vesicles released from irradiated neuroblastoma cells stimulate proliferation and invasiveness that correlate with the epithelial to mesenchymal transition in non-irradiated cells. Moreover, our results suggest that, at least in neuroblastomas, targeting the extracellular vesicles may represent a novel therapeutic approach to counteract the side effects associated with radiotherapy.


Asunto(s)
Vesículas Extracelulares/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Radiación Ionizante , Línea Celular Tumoral , Movimiento Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Roturas del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Vesículas Extracelulares/efectos de la radiación , Humanos
7.
Front Physiol ; 11: 955, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903447

RESUMEN

The increasing duration of space missions involves a progressively higher exposure of astronauts to cosmic rays, whose most hazardous component is made up of High-Atomic number and High-Energy (HZE) ions. HZE ions interact along their tracks with biological molecules inducing changes on living material qualitatively different from that observed after irradiation for therapeutic purposes or following nuclear accidents. HZE ions trigger in cells different responses initialized by DNA damage and mitochondria dysregulation, which cause a prolonged state of sterile inflammation in the tissues. These cellular phenomena may explain why spending time in space was found to cause the onset of a series of diseases normally related to aging. These changes that mimic aging but take place more quickly make space flights also an opportunity to study the mechanisms underlying aging. In this short review, we describe the biological mechanisms underlying cell senescence and aging; the peculiar characteristics of HZE ions, their interaction with living matter and the effects on the organism; the key role of mitochondria in HZE ion-induced health effects and aging-related phenomena.

8.
Cell Death Dis ; 11(3): 165, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127514

RESUMEN

Since online publication of this article, the authors noticed that there was a basic citation error in PubMed citation data. Specifically, the name of the author "Piergiorgio La Rosa" is cited as "Rosa P" in the PubMed citation, when it should be "La Rosa P", "La Rosa" being the surname and "Piergiorgio" the name of the author.

9.
Cell Death Dis ; 11(1): 51, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974344

RESUMEN

Decreased expression of mitochondrial frataxin (FXN) causes Friedreich's ataxia (FRDA), a neurodegenerative disease with type 2 diabetes (T2D) as severe comorbidity. Brown adipose tissue (BAT) is a mitochondria-enriched and anti-diabetic tissue that turns excess energy into heat to maintain metabolic homeostasis. Here we report that the FXN knock-in/knock-out (KIKO) mouse shows hyperlipidemia, reduced energy expenditure and insulin sensitivity, and elevated plasma leptin, recapitulating T2D-like signatures. FXN deficiency leads to disrupted mitochondrial ultrastructure and oxygen consumption as well as lipid accumulation in BAT. Transcriptomic data highlights cold intolerance in association with iron-mediated cell death (ferroptosis). Impaired PKA-mediated lipolysis and expression of genes controlling mitochondrial metabolism, lipid catabolism and adipogenesis were observed in BAT of KIKO mice as well as in FXN-deficient T37i brown and primary adipocytes. Significant susceptibility to ferroptosis was observed in adipocyte precursors that showed increased lipid peroxidation and decreased glutathione peroxidase 4. Collectively our data point to BAT dysfunction in FRDA and suggest BAT as promising therapeutic target to overcome T2D in FRDA.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Termogénesis/genética , Adipocitos/metabolismo , Tejido Adiposo Pardo/ultraestructura , Animales , Frío , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ferroptosis/genética , Ataxia de Friedreich/genética , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Resistencia a la Insulina/genética , Proteínas de Unión a Hierro/genética , Leptina/sangre , Lipólisis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Estrés Oxidativo/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , RNA-Seq , Frataxina
10.
Commun Biol ; 2: 317, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31453381

RESUMEN

There is a growing interest in therapeutically targeting the inflammatory response that underlies age-related chronic diseases including obesity and type 2 diabetes. Through integrative small RNA sequencing, we show the presence of conserved plant miR159a and miR156c in dried nuts having high complementarity with the mammalian TNF receptor superfamily member 1a (Tnfrsf1a) transcript. We detected both miR159a and miR156c in exosome-like nut nanovesicles (NVs) and demonstrated that such NVs reduce Tnfrsf1a protein and dampen TNF-α signaling pathway in adipocytes. Synthetic single-stranded microRNAs (ss-miRs) modified with 2'-O-methyl group function as miR mimics. In plants, this modification naturally occurs on nearly all small RNAs. 2'-O-methylated ss-miR mimics for miR156c and miR159a decreased Tnfrsf1a protein and inflammatory markers in hypertrophic as well as TNF-α-treated adipocytes and macrophages. miR156c and miR159a mimics effectively suppress inflammation in mice, highlighting a potential role of plant miR-based, single-stranded oligonucleotides in treating inflammatory-associated metabolic diseases.


Asunto(s)
Adipocitos/metabolismo , Desecación , Nueces/genética , ARN de Planta/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Tejido Adiposo/patología , Animales , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosa/metabolismo , Células HEK293 , Humanos , Hipertrofia , Inflamación/genética , Inflamación/patología , Insulina/farmacología , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Nanopartículas/química , Nanopartículas/ultraestructura , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo
11.
Oncotarget ; 8(48): 83407-83418, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29137352

RESUMEN

Mitochondrial dysfunction, inflammation and senescence-like features are observed in adipose depots in aging and obesity. Herein, we evaluated how maternal high calorie diet (HCD) may impact on subcutaneous adipose tissue (sAT) of the newborn mice. Adult C57BL/6J mice were randomly divided in three groups: normal calorie diet (NCD), HCD and HCD supplemented with niacin 8 weeks before mating. Mothers and pups were then sacrificed and metabolic and molecular analyses were carried out on sAT. HCD induced mitochondria dysfunction in mothers without inflammation and senescence, whereas in pups we also revealed the occurrence of senescent phenotype. The mitochondrial dysfunction-associated senescence in pups was accompanied by a drop in NAD+/NADH ratio and alteration in the NAD+-dependent enzymes PARP1 and SIRT1. Importantly, maternal dietary supplementation with niacin during gestation and lactation restrained NAD+/NADH decrease imposed by HCD limiting inflammatory cytokine production and senescence phenotype in newborn sAT. Given the fundamental role of sAT in buffering nutrient overload and avoiding pathogenic ectopic fat accumulation, we suggest that NAD+ boosting strategies during maternal HCD could be helpful in limiting sAT dysfunction in newborn.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...