Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 424(Pt B): 127468, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34688001

RESUMEN

Graphene oxide (GO) nanosheets, often embedded in nano-composites, have been studied as promising materials for waste water purification, in particular to adsorb heavy metals and cationic organic contaminants. However, a broader range of potential applications of GO is still unexplored. This work investigated the potential applicability of GO for enhanced in-situ soil washing of secondary sources of groundwater contamination (i.e. the controlled recirculation of a washing GO suspension via injection/extraction wells). The laboratory study aimed at quantifying the capability of GO to effectively remove adsorbed methylene blue (MB) from contaminated sand. The tests were conducted in simplified conditions (synthetic groundwater at NaCl concentration of 20 mM, silica sand) to better highlight the key mechanisms under study. The results indicated a maximum sorption capacity of 1.6 mgMB/mgGO in moderately alkaline conditions. Even though the adsorption of MB onto GO slightly reduced the GO mobility in the porous medium, a breakthrough higher than 95% was obtained for MB/GO mass ratios up to 0.5. This suggests that a very high recovery of the injected particles should be also expected in the field.

2.
J Colloid Interface Sci ; 606(Pt 1): 480-490, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34399364

RESUMEN

Silica nanoparticles (SiO2 NPs) are of increasing interest in nano-enabled agriculture, particularly as nanocarriers for the targeted delivery of agrochemicals. Their direct application in agricultural soils may lead to the release of SiO2 NPs in the environment. Although some studies have investigated transport of solid SiO2 NPs in porous media, there is a knowledge gap on how different SiO2 NP structures incorporating significant porosities can affect the mobility of such particles under different conditions. Herein, we investigated the effect of pH and ionic strength (IS) on the transport of two distinct structures of SiO2 NPs, namely solid SiO2 NPs (SSNs) and porous hollow SiO2 NPs (PHSNs), of comparable sizes (~200 nm). Decreasing pH and increasing ionic strength reduced the mobility of PHSNs in sand-packed columns more significantly than for SSNs. The deposition of PHSNs was approximately 3 times greater than that of SSNs at pH 4.5 and IS 100 mM. The results are non-intuitive given that PHSNs have a lower density and the same chemical composition of SSNs but can be explained by the greater surface roughness and ten-fold greater specific surface area of PHSNs, and their impacts on van der Waals and electrostatic interaction energies.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Concentración Osmolar , Porosidad
3.
Sci Total Environ ; 806(Pt 3): 151199, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699829

RESUMEN

In this work a novel nano-formulation is proposed to control leaching and volatilization of a broadly used herbicide, dicamba. Dicamba is subject to significant leaching in soils, due to its marked solubility, and to significant volatilization and vapor drift, with consequent risks for operators and neighbouring crops. Natural, biocompatible, low-cost materials were employed to control its dispersion in the environment: among four tested candidate carriers, a nanosized natural clay (namely, K10 montmorillonite) was selected to adsorb the pesticide, and carboxymethyl cellulose (CMC), a food-grade biodegradable polymer, was employed as a coating agent. The synthesis approach is based on direct adsorption at ambient temperature and pressure, with a subsequent particle coating to increase suspension stability and control pesticide release. The nano-formulation showed a controlled release when diluted to field-relevant concentrations: in tap water, the uncoated K10 released approximately 45% of the total loaded dicamba, and the percentage reduced to less than 30% with coating. CMC also contributed to significantly reduce dicamba losses due to volatilization from treated soils (e.g., in medium sand, 9.3% of dicamba was lost in 24 h from the commercial product, 15.1% from the uncoated nanoformulation, and only 4.5% from the coated one). Moreover, the coated nanoformulation showed a dramatic decrease in mobility in porous media (when injected in a 11.6 cm sand-packed column, 99.3% of the commercial formulation was eluted, compared to 88.4% of the uncoated nanoformulation and only 24.5% of the coated one). Greenhouse tests indicated that the clay-based nanoformulation does not hinder the dicamba efficacy toward target weeds, even though differences were observed depending on the treated species. Despite the small (lab and greenhouse) scale of the tests, these preliminary results suggest a good efficacy of the proposed nanoformulation in controlling the environmental spreading of dicamba, without hindering efficacy toward target species.


Asunto(s)
Herbicidas , Biopolímeros , Arcilla , Dicamba , Herbicidas/análisis , Suelo
4.
J Contam Hydrol ; 237: 103741, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33341658

RESUMEN

Remediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides. These adsorption barriers aim at the immobilization of heavy metals in aquifers groundwater, which was assessed in a large-scale field study in a brownfield site. Colloidal iron oxide (goethite) nanoparticles were used to install an in situ adsorption barrier in a very heterogeneous, contaminated aquifer of a brownfield in Asturias, Spain. The groundwater contained high concentrations of heavy metals with up to 25 mg/L zinc, 1.3 mg/L lead, 40 mg/L copper, 0.1 mg/L nickel and other minor heavy metal pollutants below 1 mg/L. High amounts of zinc (>900 mg/kg), lead (>2000 mg/kg), nickel (>190 mg/kg) were also present in the sediment. Ca. 1500 kg of goethite nanoparticles of 461 ± 266 nm diameter were injected at low pressure (< 0.6 bar) into the aquifer through nine screened injection wells. For each injection well, a radius of influence of at least 2.5 m was achieved within 8 h, creating an in situ barrier of 22 × 3 × 9 m. Despite the extremely high heavy metal contamination and the strong heterogeneity of the aquifer, successful immobilization of contaminants was observed in the tested area. The contaminant concentrations were strongly reduced immediately after the injection and the abatement of the heavy metals continued for a total post-injection monitoring period of 189 days. The iron oxide particles were found to adsorb heavy metals even at pH-values between 4 and 6, where low adsorption would have been expected. The study demonstrated the applicability of iron oxide nanoparticles for installing adsorption barriers for containment of heavy metals in contaminated groundwater under real conditions.


Asunto(s)
Restauración y Remediación Ambiental , Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Nanopartículas Magnéticas de Óxido de Hierro , España , Contaminantes Químicos del Agua/análisis
5.
Proc Natl Acad Sci U S A ; 117(24): 13366-13373, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32487728

RESUMEN

Nanoscale zero-valent iron (nZVI) particles have excellent capacity for in situ remediation of groundwater resources contaminated by a range of organic and inorganic contaminants. Chlorinated solvents are by far the most treated compounds. Studies at column, pilot, and field scales have reported successful decrease in contaminant concentration upon injection of nZVI suspensions in the contaminated zones. However, the field application is far from optimized, particularly for treatments at-or close to-the source, in the presence of residual nonaqueous liquid (NAPL). The knowledge gaps surrounding the processes that occur within the pores of the sediments hosting those contaminants at microscale limit our ability to design nanoremediation processes that are optimized at larger scales. This contribution provides a pore-scale picture of the nanoremediation process. Our results reveal how the distribution of the trapped contaminant evolves as a result of contaminant degradation and generation of gaseous products. We have used state-of-the-art four-dimensional (4D) imaging (time-resolved three-dimensional [3D]) experiments to understand the details of this degradation reaction at the micrometer scale. This contribution shows that the gas released (from the reduction reaction) remobilizes the trapped contaminant by overcoming the capillary forces. Our results show that the secondary sources of NAPL contaminations can be effectively treated by nZVI, not only by in situ degradation, but also through pore-scale remobilization (induced by the evolved gas phase). The produced gas reduces the water relative permeability to less than 1% and, therefore, significantly limits the extent of plume migration in the short term.

6.
Sci Total Environ ; 698: 134224, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31493572

RESUMEN

This study focuses on the transport in porous media of graphene oxide nanoparticles (GONP) under conditions similar to those applied in the generation of in-situ reactive zones for groundwater remediation (i.e. GO concentration of few tens of mg/l, stable suspension in alkaline solution). The experimental tests evaluated the influence on GO transport of three key factors, namely particle size (300-1200 nm), concentration (10-50 mg/L), and sand size (coarse to fine). Three sources of GONP were considered (two commercial and one synthesized in the laboratory). Particles were stably dispersed in water at pH 8.5 and showed a good mobility in the porous medium under all experimental conditions: after injection of 5 pore volumes and flushing, the highest recovery was around 90%, the lowest around 30% (only for largest particles in fine sand). The particle size was by far the most impacting parameter, with increasing mobility with decreasing size, even if sand size and particle concentration were also relevant. The source of GONP showed a minor impact on the mobility. The transport test data were successfully modeled using the advection-dispersion-deposition equations typically applied for spherical colloids. Experimental and modeling results suggested that GONP, under the explored conditions, are retained due to both blocking and straining, the latter being relevant only for large particles and/or fine sand. The findings of this study play a key role in the development of an in-situ groundwater remediation technology based on the injection of GONP for contaminant degradation or sorption. Despite their peculiar shape, GONP behavior in porous media is comparable with spherical colloids, which have been more studied by far. In particular, the possibility of modeling GONP transport using existing models ensures that they can be applied also for the design of field-scale injections of GONP, similarly to other particles already used in nanoremediation.

7.
Environ Pollut ; 239: 242-252, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29656248

RESUMEN

Nanosized particles (NPs), such as TiO2, Silver, graphene NPs, nanoscale zero-valent iron, carbon nanotubes, etc., are increasingly used in industrial processes, and releases at production plants and from landfills are likely scenarios for the next years. As a consequence, appropriate procedures and tools to quantify the risks for human health associated to these releases are needed. The tiered approach of the standard ASTM procedure (ASTM-E2081-00) is today the most applied for human health risk assessment at sites contaminated by chemical substances, but it cannot be directly applied to nanoparticles: NP transport along migration pathways follows mechanisms significantly different from those of chemicals; moreover, also toxicity indicators (namely, reference dose and slope factor) are NP-specific. In this work a risk assessment approach modified for NPs is proposed, with a specific application at Tier 2 to migration in groundwater. The standard ASTM equations are modified to include NP-specific transport mechanisms. NPs in natural environments are typically characterized by a heterogeneous set of NPs having different size, shape, coating, etc. (all properties having a significant impact on both mobility and toxicity). To take into account this heterogeneity, the proposed approach divides the NP population into classes, each having specific transport and toxicity properties, and simulates them as independent species. The approach is finally applied to a test case simulating the release of heterogeneous Silver NPs from a landfill. The results show that taking into account the size-dependent mobility of the particles provides a more accurate result compared to the direct application of the standard ASTM procedure. In particular, the latter tends to underestimate the overall toxic risk associated to the nP release.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Agua Subterránea/química , Nanotubos de Carbono/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Grafito , Humanos , Nanopartículas del Metal/química , Nanopartículas/química , Plata/química
8.
J Contam Hydrol ; 210: 50-64, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29519731

RESUMEN

Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and isotropic aquifer, and verified using particle tracking simulations performed using the semi-analytical particle tracking and pathlines model (PMPATH). Nine batch experiments were then performed to investigate the impact of mixed nano-ZVI, NZVI (0 to 2 g l-1) and micro-ZVI, MZVI (0 to 4 g l-1) on the nitrate removal rate (with initial [Formula: see text] =132 mg l-1). The NPRWs system was tested in a bench-scale sand medium (60 cm length × 40 cm width × 25 cm height) for three orientations of NPRWs (vertical, horizontal, and slanted with inclination angle of 45°). A mixture of nano/micro ZVI, was used, applying constant conditions of pore water velocity (0.024 mm s-1) and initial nitrate concentration (128 mg l-1) for five pore volumes. The results of the batch tests showed that mixing nano and micro Fe0 outperforms these individual materials in nitrate removal rates. The final products of nitrate degradation in both batch and bench-scale experiments were [Formula: see text] , [Formula: see text] , and N2(gas). The results of sand-box experiments indicated that the slanted NPRWs have a higher nitrate reduction rate (57%) in comparison with vertical (38%) and horizontal (41%) configurations. The results also demonstrated that three factors have pivotal roles in expected HCT and Wcz, namely the contrast between the hydraulic conductivity of aquifer and reactive materials within the wells, the mass of Fe0 in the NPRWs, and the orientation of NPRWs adopted. A trade-off between these factors should be considered to increase the efficiency of remediation using the NPRWs system.


Asunto(s)
Agua Subterránea/química , Hierro/química , Nanopartículas/química , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Pozos de Agua , Tamaño de la Partícula , Dióxido de Silicio/química
9.
Sci Rep ; 7(1): 12992, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29021630

RESUMEN

In this study, a model assisted strategy is developed to control the distribution of colloids in porous media in the framework of nanoremediation, an innovative environmental nanotechnology aimed at reclaiming contaminated aquifers. This approach is exemplified by the delivery of humic acid-stabilized iron oxide nanoparticles (FeOx), a typical reagent for in situ immobilization of heavy metals. By tuned sequential injections of FeOx suspensions and of solutions containing a destabilizing agent (i.e. calcium or magnesium), the two fronts, which advance at different rates, overlap at the target location (i.e., the central portion) of the porous systems. Here, the particles deposit and accumulate irreversibly, creating a reactive zone. An analytical expression predicting the position of the clustering zone in 1D systems is derived from first principles of advective-dispersive transport. Through this equation, the sequence and duration of the injection of the different solutions in the medium is assessed. The model robustness is demonstrated by its successful application to various systems, comprising the use of different sands or immobilizing cations, both in 1D and 2D geometries. The method represents an advancement in the control of nanomaterial fate in the environment, and could enhance nanoremediation making it an effective alternative to more conventional techniques.

10.
Phys Rev E ; 94(5-1): 053118, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27967112

RESUMEN

In this work, the influence of pore space geometry on solute transport in porous media is investigated performing computational fluid dynamics pore-scale simulations of fluid flow and solute transport. The three-dimensional periodic domains are obtained from three different pore structure configurations, namely, face-centered-cubic (fcc), body-centered-cubic (bcc), and sphere-in-cube (sic) arrangements of spherical grains. Although transport simulations are performed with media having the same grain size and the same porosity (in fcc and bcc configurations), the resulting breakthrough curves present noteworthy differences, such as enhanced tailing. The cause of such differences is ascribed to the presence of recirculation zones, even at low Reynolds numbers. Various methods to readily identify recirculation zones and quantify their magnitude using pore-scale data are proposed. The information gained from this analysis is then used to define macroscale models able to provide an appropriate description of the observed anomalous transport. A mass transfer model is applied to estimate relevant macroscale parameters (hydrodynamic dispersion above all) and their spatial variation in the medium; a functional relation describing the spatial variation of such macroscale parameters is then proposed.

11.
J Contam Hydrol ; 193: 10-20, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27607520

RESUMEN

Engineered nanoparticles (NPs) in the environment can act both as contaminants, when they are unintentionally released, and as remediation agents when injected on purpose at contaminated sites. In this work two carbon-based NPs are considered, namely CARBO-IRON®, a new material developed for contaminated site remediation, and single layer graphene oxide (SLGO), a potential contaminant of the next future. Understanding and modeling the transport and deposition of such NPs in aquifer systems is a key aspect in both cases, and numerical models capable to simulate NP transport in groundwater in complex 3D scenarios are necessary. To this aim, this work proposes a modeling approach based on modified advection-dispersion-deposition equations accounting for the coupled influence of flow velocity and ionic strength on particle transport. A new modeling tool (MNM3D - Micro and Nanoparticle transport Model in 3D geometries) is presented for the simulation of NPs injection and transport in 3D scenarios. MNM3D is the result of the integration of the numerical code MNMs (Micro and Nanoparticle transport, filtration and clogging Model - Suite) in the well-known transport model RT3D (Clement et al., 1998). The injection in field-like conditions of CARBO-IRON® (20g/l) amended by CMC (4g/l) in a 2D vertical tank (0.7×1.0×0.12m) was simulated using MNM3D, and compared to experimental results under the same conditions. Column transport tests of SLGO at a concentration (10mg/l) representative of a possible spill of SLGO-containing waste water were performed at different values of ionic strength (0.1 to 35mM), evidencing a strong dependence of SLGO transport on IS, and a reversible blocking deposition. The experimental data were fitted using the numerical code MNMs and the ionic strength-dependent transport was up-scaled for a full scale 3D simulation of SLGO release and long-term transport in a heterogeneous aquifer. MNM3D showed to potentially represent a valid tool for the prediction of the long-term behavior of engineered nanoparticles released in the environment (e.g. from landfills), and the preliminary design of in situ aquifer remediation through injection of suspensions of reactive NPs.


Asunto(s)
Carbono/química , Restauración y Remediación Ambiental/métodos , Filtración , Grafito/química , Modelos Químicos , Nanopartículas/química , Contaminantes Químicos del Agua/química , Agua Subterránea/química , Porosidad
12.
J Contam Hydrol ; 179: 182-95, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26142547

RESUMEN

The work explores the efficacy of a biochemical remediation of a nitrate-contaminated aquifer by a combination of nanoscale zero-valent iron (NZVI) and bacteria supported by carbon substrates. Nitrate removal was first assessed in batch tests, and then in a laboratory bench-scale aquifer model (60cm length×40cm width×50cm height), in which a background flow was maintained. Water and natural sandy material of a stratified aquifer were used in the tests to enhance the reliability of the results. An array of non-pumping-reactive wells (NPRWs) filled with NZVI (d50=50nm, and SSA=22.5m(2)/g) mixed with carbon substrates (beech sawdust and maize cobs) was installed in the bench-scale aquifer model to intercept the flow and remove nitrate (NO3(-) conc.=105mg/l). The NPRW array was preferred to a continuous permeable reactive barrier (PRB) since wells can be drilled at greater depths compared to PRBs. The optimal well diameter, spacing among the NPRWs and number of wells in the bench-scale model were designed based on flow simulations using the semi-analytical particle tracking (advection) model, PMPATH. An optimal configuration of four wells, 35mm diameter, and capture width of 1.8 times the well diameter was obtained for a hydraulic conductivity contrast between reactive materials in the wells and aquifer media (KPM/Kaq=16.5). To avoid excessive proximity between wells, the system was designed so that the capture of the contaminated water was not complete, and several sequential arrays of wells were preferred. To simulate the performance of the array, the water that passed through the bench-scale NPRW system was re-circulated to the aquifer inlet, and a nitrate degradation below the limit target concentration (10mg/l) was obtained after 13days (corresponding to 13 arrays of wells in the field). The results of this study demonstrated that using the NZVI-mixed-carbon substrates in the NPRW system has a great potential for in-situ nitrate reduction in contaminated groundwater. This NPRW system can be considered a promising and viable technology in deep aquifers.


Asunto(s)
Carbono , Restauración y Remediación Ambiental/métodos , Agua Subterránea , Hierro , Nitratos/análisis , Purificación del Agua/métodos , Agua Subterránea/química , Irán , Modelos Teóricos , Nitratos/química , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Contaminación del Agua , Pozos de Agua
13.
Environ Sci Technol ; 49(9): 5593-600, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25884287

RESUMEN

The injection of microscale zerovalent iron (mZVI) particles for groundwater remediation has received much interest in recent years. However, to date, monitoring of mZVI particle injection is based on chemical analysis of groundwater and soil samples and thus might be limited in its spatiotemporal resolution. To overcome this deficiency, in this study, we investigate the application of complex electrical conductivity imaging, a geophysical method, to monitor the high-pressure injection of mZVI in a field-scale application. The resulting electrical images revealed an increase in the induced electrical polarization (∼20%), upon delivery of ZVI into the targeted area, due to the accumulation of metallic surfaces at which the polarization takes place. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through preferential flowpaths. Correlation of the electrical response and geochemical data, in particular the analysis of recovered cores from drilling after the injection, confirmed the migration of particles (and stabilizing solution) to shallow areas through fractures formed during the injection. Hence, our results demonstrate the suitability of the complex conductivity imaging method to monitor the transport of mZVI during subsurface amendment in quasi real-time.


Asunto(s)
Conductividad Eléctrica , Restauración y Remediación Ambiental , Agua Subterránea/química , Imagenología Tridimensional , Hierro/química , Bélgica , Hidrocarburos Clorados/análisis , Soluciones
14.
Artículo en Inglés | MEDLINE | ID: mdl-25122394

RESUMEN

In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed on numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme and are often overlooked. The simulations performed are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed.


Asunto(s)
Hidrodinámica , Modelos Moleculares , Conformación Molecular , Porosidad
15.
J Contam Hydrol ; 166: 34-51, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25063698

RESUMEN

In the present work column transport tests were performed in order to study the mobility of guar-gum suspensions of microscale zero-valent iron particles (MZVI) in porous media. The results were analyzed with the purpose of implementing a radial model for the design of full scale interventions. The transport tests were performed using several concentrations of shear thinning guar gum solutions as stabilizer (1.5, 3 and 4g/l) and applying different flow rates (Darcy velocity in the range 1·10(-4) to 2·10(-3)m/s), representative of different distances from the injection point in the radial domain. Empirical relationships, expressing the dependence of the deposition and release parameters on the flow velocity, were derived by inverse fitting of the column transport tests using a modified version of E-MNM1D (Tosco and Sethi, 2010) and the user interface MNMs (www.polito.it/groundwater/software). They were used to develop a comprehensive transport model of MZVI suspensions in radial coordinates, called E-MNM1R, which takes into account the non Newtonian (shear thinning) rheological properties of the dispersant fluid and the porous medium clogging associated with filtration and sedimentation in the porous medium of both MZVI and guar gum residual undissolved particles. The radial model was run in forward mode to simulate the injection of MZVI dispersed in guar gum in conditions similar to those applied in the column transport tests. In a second stage, we demonstrated how the model can be used as a valid tool for the design and the optimization of a full scale intervention. The simulation results indicated that several concurrent aspects are to be taken into account for the design of a successful delivery of MZVI/guar gum slurries via permeation injection, and a compromise is necessary between maximizing the radius of influence of the injection and minimizing the injection pressure, to guarantee a sufficiently homogeneous distribution of the particles around the injection point and to prevent preferential flow paths.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Galactanos/química , Hierro/química , Mananos/química , Modelos Químicos , Gomas de Plantas/química , Filtración , Porosidad , Reología , Soluciones
16.
J Contam Hydrol ; 166: 23-33, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25065767

RESUMEN

The present work is the first part of a comprehensive study on the use of guar gum to improve delivery of microscale zero-valent iron particles in contaminated aquifers. Guar gum solutions exhibit peculiar shear thinning properties, with high viscosity in static conditions and lower viscosity in dynamic conditions: this is beneficial both for the storage of MZVI dispersions, and also for the injection in porous media. In the present paper, the processes associated with guar gum injection in porous media are studied performing single-step and multi-step filtration tests in sand-packed columns. The experimental results of single-step tests performed by injecting guar gum solutions prepared at several concentrations and applying different dissolution procedures evidenced that the presence of residual undissolved polymeric particles in the guar gum solution may have a relevant negative impact on the permeability of the porous medium, resulting in evident clogging. The most effective preparation procedure which minimizes the presence of residual particles is dissolution in warm water (60°C) followed by centrifugation (procedure T60C). The multi-step tests (i.e. injection of guar gum at constant concentration with a step increase of flow velocity), performed at three polymer concentrations (1.5, 3 and 4g/l) provided information on the rheological properties of guar gum solutions when flowing through a porous medium at variable discharge rates, which mimic the injection in radial geometry. An experimental protocol was defined for the rheological characterization of the fluids in porous media, and empirical relationships were derived for the quantification of rheological properties and clogging with variable injection rate. These relationships will be implemented in the second companion paper (Part II) in a radial transport model for the simulation of large-scale injection of MZVI-guar gum slurries.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Galactanos/química , Agua Subterránea/química , Hierro/química , Mananos/química , Gomas de Plantas/química , Filtración , Polímeros , Porosidad , Reología , Viscosidad
17.
J Contam Hydrol ; 164: 88-99, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24963597

RESUMEN

A pilot injection test with guar gum stabilized microscale zerovalent iron (mZVI) particles was performed at test site V (Belgium) where different chlorinated aliphatic hydrocarbons (CAHs) were present as pollutants in the subsurface. One hundred kilograms of 56µm-diameter mZVI (~70gL(-1)) was suspended in 1.5m(3) of guar gum (~7gL(-1)) solution and injected into the test area. In order to deliver the guar gum stabilized mZVI slurry, one direct push bottom-up injection (Geoprobe) was performed with injections at 5 depths between 10.5 and 8.5m bgs. The direct push technique was preferred above others (e.g. injection at low flow rate via screened wells) because of the limited hydraulic conductivity of the aquifer, and to the large size of the mZVI particles. A final heterogeneous distribution of the mZVI in the porous medium was observed explicable by preferential flow paths created during the high pressure injection. The maximum observed delivery distance was 2.5m. A significant decrease in 1,1,1-TCA concentrations was observed in close vicinity of spots where the highest concentration of mZVI was observed. Carbon stable isotope analysis (CSIA) yielded information on the success of the abiotic degradation of 1,1,1-TCA and indicated a heterogeneous spatio-temporal pattern of degradation. Finally, the obtained results show that mZVI slurries stabilized by guar gum can be prepared at pilot scale and directly injected into low permeable aquifers, indicating a significant removal of 1,1,1-TCA.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Galactanos/química , Hierro/química , Mananos/química , Gomas de Plantas/química , Tricloroetanos/química , Contaminantes Químicos del Agua/química , Bélgica , Agua Subterránea , Proyectos Piloto , Porosidad
18.
J Colloid Interface Sci ; 421: 33-43, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24594029

RESUMEN

Guar gum can be used to effectively improve stability and mobility of microscale zerovalent iron particles (MZVI) used in groundwater remediation. Guar gum is a food-grade, environment friendly natural polysaccharide, which is often used as thickening agent in a broad range of food, pharmaceutical and industrial applications. Guar gum solutions are non-Newtonian, shear thinning fluids, characterized by high viscosity in static conditions and low viscosity in dynamic conditions. In particular, the high zero shear viscosity guarantees the MZVI dispersion stability, reducing the sedimentation rate of the particles thus enabling its storage and field operations. In this work, a comprehensive rheological characterization of guar gum-based slurries of MZVI particles is provided. First, we derived a model to link the bulk shear viscosity to the concentration of guar gum and then we applied it for the derivation of a modified Stokes law for the prediction of the sedimentation rate of the iron particles. The influence of the preparation procedure (cold or hot dissolution and high shear processing) on the viscosity and on the stability of the suspensions was then assessed. Finally, the dosage and concentration of enzymes - an environment friendly breaker--were studied for enhancing and controlling the degradation kinetics of the suspensions. The derived empirical relationships can be used for the implementation of an iron slurry flow and transport model and for the design of full scale injection interventions.


Asunto(s)
Enzimas/química , Galactanos/química , Hierro/química , Mananos/química , Microesferas , Gomas de Plantas/química , Reología , Adsorción , Cinética , Microscopía Electrónica de Rastreo
19.
Water Res ; 47(1): 326-38, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23141767

RESUMEN

The design of an efficient field-scale remediation based on the use of nanoscale zero valent iron (NZVI) requires an accurate assessment of the mobility of such particles in saturated porous media, both during injection in the subsurface (short-term mobility) and later (long-term mobility). In this study, the mobility of highly concentrated dispersions of bimetallic Fe/Cu nanoparticles (d(50) = 70 ± 5 nm) in sand-packed columns (0.5 m length and 0.025 m inner diameter) was studied. In particular, the influence of flow rate (V = 5 × 10(-4), 1 × 10(-3), 2 × 10(-3) m/s) and injected particle concentrations (2, 5, 8, 12 g/l) was addressed. Breakthrough curves and water pressure drop along the column, averaged effective porosity and final distribution of retained particles along the column were measured. Experimental results evidenced a good mobility of the Fe/Cu particles, with significant breakthrough in all explored experimental conditions of flow rate and C(0), without requiring the addition of any stabilizing agent. Clogging phenomenon of the column and also the pore pressure variation during injection period are strongly affected by injected concentration. Clogging due to deposition of particles following a ripening dynamics was observed in particular for C(0) = 8 and 12 g/l. The experimental data were modeled using the E-MNM1D software. The study has implications for field injection of bimetallic nanoparticles, suggesting that particular care is to be devoted when selecting injection concentration, to avoid porous medium clogging and control the radius of influence.


Asunto(s)
Cobre/química , Hierro/química , Nanopartículas del Metal/química , Dióxido de Silicio , Purificación del Agua/métodos , Modelos Teóricos , Contaminantes Químicos del Agua/química
20.
Environ Sci Technol ; 46(7): 4008-15, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22356610

RESUMEN

The use of nanoscale ferrihydrite particles, which are known to effectively enhance microbial degradation of a wide range of contaminants, represents a promising technology for in situ remediation of contaminated aquifers. Thanks to their small size, ferrihydrite nanoparticles can be dispersed in water and directly injected into the subsurface to create reactive zones where contaminant biodegradation is promoted. Field applications would require a detailed knowledge of ferrihydrite transport mechanisms in the subsurface, but such studies are lacking in the literature. The present study is intended to fill this gap, focusing in particular on the influence of flow rate and ionic strength on particle mobility. Column tests were performed under constant or transient ionic strength, including injection of ferrihydrite colloidal dispersions, followed by flushing with particle-free electrolyte solutions. Particle mobility was greatly affected by the salt concentration, and particle retention was almost irreversible under typical salt content in groundwater. Experimental results indicate that, for usual ionic strength in European aquifers (2 to 5 mM), under natural flow condition ferrihydrite nanoparticles are likely to be transported for 5 to 30 m. For higher ionic strength, corresponding to contaminated aquifers, (e.g., 10 mM) the travel distance decreases to few meters. A simple relationship is proposed for the estimation of travel distance with changing flow rate and ionic strength. For future applications to aquifer remediation, ionic strength and injection rate can be used as tuning parameters to control ferrihydrite mobility in the subsurface and therefore the radius of influence during field injections.


Asunto(s)
Compuestos Férricos/química , Movimiento (Física) , Nanopartículas/química , Reología , Coloides , Cinética , Nanopartículas/ultraestructura , Concentración Osmolar , Porosidad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...