Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell Rep ; 43(6): 114297, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38824643

RESUMEN

The mechanical environment generated through the adhesive interaction of endothelial cells (ECs) with the matrix controls nuclear tension, preventing aberrant gene synthesis and the transition from restrictive to leaky endothelium, a hallmark of acute lung injury (ALI). However, the mechanisms controlling tension transmission to the nucleus and EC-restrictive fate remain elusive. Here, we demonstrate that, in a kinase-independent manner, focal adhesion kinase (FAK) safeguards tension transmission to the nucleus to maintain EC-restrictive fate. In FAK-depleted ECs, robust activation of the RhoA-Rho-kinase pathway increased EC tension and phosphorylation of the nuclear envelope protein, emerin, activating DNMT3a. Activated DNMT3a methylates the KLF2 promoter, impairing the synthesis of KLF2 and its target S1PR1 to induce the leaky EC transcriptome. Repleting FAK (wild type or kinase dead) or inhibiting RhoA-emerin-DNMT3a activities in damaged lung ECs restored KLF2 transcription of the restrictive EC transcriptome. Thus, FAK sensing and control of tension transmission to the nucleus govern restrictive endothelium to maintain lung homeostasis.


Asunto(s)
Núcleo Celular , Células Endoteliales , Factores de Transcripción de Tipo Kruppel , Transcriptoma , Proteína de Unión al GTP rhoA , Humanos , Núcleo Celular/metabolismo , Transcriptoma/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Células Endoteliales/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , ADN Metiltransferasa 3A , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Regiones Promotoras Genéticas/genética , Fosforilación
2.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585943

RESUMEN

Tissue barriers must be rapidly restored after injury to promote regeneration. However, the mechanism behind this process is unclear, particularly in cases where the underlying extracellular matrix is still compromised. Here, we report the discovery of matrimeres as constitutive nanoscale mediators of tissue integrity and function. We define matrimeres as non-vesicular nanoparticles secreted by cells, distinguished by a primary composition comprising at least one matrix protein and DNA molecules serving as scaffolds. Mesenchymal stromal cells assemble matrimeres from fibronectin and DNA within acidic intracellular compartments. Drawing inspiration from this biological process, we have achieved the successful reconstitution of matrimeres without cells. This was accomplished by using purified matrix proteins, including fibronectin and vitronectin, and DNA molecules under optimal acidic pH conditions, guided by the heparin-binding domain and phosphate backbone, respectively. Plasma fibronectin matrimeres circulate in the blood at homeostasis but exhibit a 10-fold decrease during systemic inflammatory injury in vivo . Exogenous matrimeres rapidly restore vascular integrity by actively reannealing endothelial cells post-injury and remain persistent in the host tissue matrix. The scalable production of matrimeres holds promise as a biologically inspired platform for regenerative nanomedicine.

3.
NPJ Biofilms Microbiomes ; 10(1): 16, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429317

RESUMEN

Pseudomonas aeruginosa is an important cause of lower respiratory tract infections, such as ventilator-associated bacterial pneumonia (VABP). Using inhaled antibiotics to treat VABP can achieve high drug concentrations at the infection site while minimizing systemic toxicities. Despite the theoretical advantages, clinical trials have failed to show a benefit for inhaled antibiotic therapy in treating VABP. A potential reason for this discordance is the presence of biofilm-embedded bacteria in lower respiratory tract infections. Drug selection and dosing are often based on data from bacteria grown planktonically. In the present study, an in vitro air-liquid interface pharmacokinetic/pharmacodynamic biofilm model was optimized to evaluate the activity of simulated epithelial lining fluid exposures of inhaled and intravenous doses of polymyxin B and tobramycin against two P. aeruginosa strains. Antibiotic activity was also determined against the P. aeruginosa strains grown planktonically. Our study revealed that inhaled antibiotic exposures were more active than their intravenous counterparts across biofilm and planktonic populations. Inhaled exposures of polymyxin B and tobramycin exhibited comparable activity against planktonic P. aeruginosa. Although inhaled polymyxin B exposures were initially more active against P. aeruginosa biofilms (through 6 h), tobramycin was more active by the end of the experiment (48 h). Together, these data slightly favor the use of inhaled tobramycin for VABP caused by biofilm-forming P. aeruginosa that are not resistant to either antibiotic. The optimized in vitro air-liquid interface pharmacokinetic/pharmacodynamic biofilm model may be beneficial for the development of novel anti-biofilm agents or to optimize antibiotic dosing for infections such as VABP.


Asunto(s)
Infecciones por Pseudomonas , Infecciones del Sistema Respiratorio , Humanos , Antibacterianos , Pseudomonas aeruginosa , Polimixina B/farmacología , Tobramicina/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Biopelículas
4.
Nat Commun ; 14(1): 4360, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468519

RESUMEN

Chemotherapy-induced cardiac damage remains a leading cause of death amongst cancer survivors. Anthracycline-induced cardiotoxicity is mediated by severe mitochondrial injury, but little is known about the mechanisms by which cardiomyocytes adaptively respond to the injury. We observed the translocation of selected mitochondrial tricarboxylic acid (TCA) cycle dehydrogenases to the nucleus as an adaptive stress response to anthracycline-cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes and in vivo. The expression of nuclear-targeted mitochondrial dehydrogenases shifts the nuclear metabolic milieu to maintain their function both in vitro and in vivo. This protective effect is mediated by two parallel pathways: metabolite-induced chromatin accessibility and AMP-kinase (AMPK) signaling. The extent of chemotherapy-induced cardiac damage thus reflects a balance between mitochondrial injury and the protective response initiated by the nuclear pool of mitochondrial dehydrogenases. Our study identifies nuclear translocation of mitochondrial dehydrogenases as an endogenous adaptive mechanism that can be leveraged to attenuate cardiomyocyte injury.


Asunto(s)
Cardiopatías , Células Madre Pluripotentes Inducidas , Humanos , Cardiotoxicidad/metabolismo , Cardiopatías/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Antibióticos Antineoplásicos/farmacología , Antraciclinas/farmacología , Inhibidores de Topoisomerasa II/farmacología , Oxidorreductasas/metabolismo , Miocitos Cardíacos/metabolismo , Doxorrubicina/farmacología
5.
Elife ; 122023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37158595

RESUMEN

Potassium efflux via the two-pore K+ channel TWIK2 is a requisite step for the activation of NLRP3 inflammasome, however, it remains unclear how K+ efflux is activated in response to select cues. Here, we report that during homeostasis, TWIK2 resides in endosomal compartments. TWIK2 is transported by endosomal fusion to the plasmalemma in response to increased extracellular ATP resulting in the extrusion of K+. We showed that ATP-induced endosomal TWIK2 plasmalemma translocation is regulated by Rab11a. Deleting Rab11a or ATP-ligated purinergic receptor P2X7 each prevented endosomal fusion with the plasmalemma and K+ efflux as well as NLRP3 inflammasome activation in macrophages. Adoptive transfer of Rab11a-depleted macrophages into mouse lungs prevented NLRP3 inflammasome activation and inflammatory lung injury. We conclude that Rab11a-mediated endosomal trafficking in macrophages thus regulates TWIK2 localization and activity at the cell surface and the downstream activation of the NLRP3 inflammasome. Results show that endosomal trafficking of TWIK2 to the plasmalemma is a potential therapeutic target in acute or chronic inflammatory states.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Adenosina Trifosfato/metabolismo , Transporte Biológico , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
6.
Sci Rep ; 12(1): 16488, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182964

RESUMEN

Blood-brain barrier (BBB) dysfunction is emerging as a key pathogenic factor in the progression of Alzheimer's disease (AD), where increased microvascular endothelial permeability has been proposed to play an important role. However, the molecular mechanisms leading to increased brain microvascular permeability in AD are not fully understood. We studied brain endothelial permeability in female APPswe/PS1∆E9 (APP/PS1) mice which constitute a transgenic mouse model of amyloid-beta (Aß) amyloidosis and found that permeability increases with aging in the areas showing the greatest amyloid plaque deposition. We performed an unbiased bulk RNA-sequencing analysis of brain endothelial cells (BECs) in female APP/PS1 transgenic mice. We observed that upregulation of interferon signaling gene expression pathways in BECs was among the most prominent transcriptomic signatures in the brain endothelium. Immunofluorescence analysis of isolated BECs from female APP/PS1 mice demonstrated higher levels of the Type I interferon-stimulated gene IFIT2. Immunoblotting of APP/PS1 BECs showed downregulation of the adherens junction protein VE-cadherin. Stimulation of human brain endothelial cells with interferon-ß decreased the levels of the adherens junction protein VE-cadherin as well as tight junction proteins Occludin and Claudin-5 and increased barrier leakiness. Depletion of the Type I interferon receptor in human brain endothelial cells prevented interferon-ß-induced VE-cadherin downregulation and restored endothelial barrier integrity. Our study suggests that Type I interferon signaling contributes to brain endothelial dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer , Interferón Tipo I , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Claudina-5/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Endotelio/metabolismo , Femenino , Humanos , Interferón Tipo I/metabolismo , Interferón beta/metabolismo , Ratones , Ratones Transgénicos , Ocludina/metabolismo , Placa Amiloide/patología , ARN/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Proteínas de Uniones Estrechas/metabolismo
7.
Redox Biol ; 52: 102304, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35413643

RESUMEN

As essential regulators of mitochondrial quality control, mitochondrial dynamics and mitophagy play key roles in maintenance of metabolic health and cellular homeostasis. Here we show that knockdown of the membrane-inserted scaffolding and structural protein caveolin-1 (Cav-1) and expression of tyrosine 14 phospho-defective Cav-1 mutant (Y14F), as opposed to phospho-mimicking Y14D, altered mitochondrial morphology, and increased mitochondrial matrix mixing, mitochondrial fusion and fission dynamics as well as mitophagy in MDA-MB-231 triple negative breast cancer cells. Further, we found that interaction of Cav-1 with mitochondrial fusion/fission machinery Mitofusin 2 (Mfn2) and Dynamin related protein 1 (Drp1) was enhanced by Y14D mutant indicating Cav-1 Y14 phosphorylation prevented Mfn2 and Drp1 translocation to mitochondria. Moreover, limiting mitochondrial recruitment of Mfn2 diminished formation of the PINK1/Mfn2/Parkin complex required for initiation of mitophagy resulting in accumulation of damaged mitochondria and ROS (mtROS). Thus, these studies indicate that phospho-Cav-1 may be an important switch mechanism in cancer cell survival which could lead to novel strategies for complementing cancer therapies.


Asunto(s)
Caveolina 1 , Mitofagia , Caveolina 1/genética , Caveolina 1/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Especies Reactivas de Oxígeno/metabolismo
8.
Am J Respir Cell Mol Biol ; 66(1): 12-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34555309

RESUMEN

In vivo intravital imaging in animal models in the lung remains challenging owing to respiratory motion artifacts. Here we describe a novel intravital imaging approach based on the computer-vision stabilization algorithm, Computer-Vision Stabilized Intravital Imaging. This method corrects lung movements and deformations at submicron precision in respiring mouse lungs. The precision enables high-throughput quantitative analysis of intravital pulmonary polymorphonuclear neutrophil (PMN) dynamics in lungs. We quantified real-time PMN patrolling dynamics of microvessels in the basal state and PMN recruitment resulting from sequestration in a model of endotoxemia in mice. We focused on determining the marginated pool of PMNs in the lung. Direct visualization of marginated PMNs revealed that they are not static but highly dynamic and undergo repeated cycles of "catch and release." PMNs briefly arrest in larger diameter capillary junction (∼10 µm) and then squeeze into narrower, approximately 5-µm diameter vessels through PMN deformation. We also observed that the sequestered PMNs in lung microvessels lost their migratory capabilities in association with cell morphological change following prolonged endotoxemia. These observations underscore the value of direct visualization and quantitative analysis of PMN dynamics in lungs to study PMN physiology and pathophysiology and role in inflammatory lung injury.


Asunto(s)
Simulación por Computador , Microscopía Intravital , Pulmón/diagnóstico por imagen , Pulmón/patología , Neutrófilos/patología , Animales , Endotoxemia/diagnóstico por imagen , Pulmón/irrigación sanguínea , Ratones Endogámicos C57BL , Microvasos/diagnóstico por imagen , Microvasos/patología
9.
Nat Biomed Eng ; 6(1): 54-66, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34083763

RESUMEN

The precise understanding and control of microenvironmental cues could be used to optimize the efficacy of cell therapeutics. Here, we show that mesenchymal stromal cells (MSCs) singly coated with a soft conformal gel presenting defined chemomechanical cues promote matrix remodelling by secreting soluble interstitial collagenases in response to the presence of tumour necrosis factor alpha (TNF-α). In mice with fibrotic lung injury, treatment with the coated MSCs maintained normal collagen levels, fibre density and microelasticity in lung tissue, and the continuous presentation of recombinant TNF-α in the gel facilitated the reversal of aberrant tissue remodelling by the cells when inflammation subsided in the host. Gel coatings with predefined chemomechanical cues could be used to tailor cells with specific mechanisms of action for desired therapeutic outcomes.


Asunto(s)
Coristoma , Células Madre Mesenquimatosas , Ingeniería de Tejidos , Animales , Quimiotaxis , Coristoma/patología , Colágeno , Geles , Ratones , Ingeniería de Tejidos/métodos , Factor de Necrosis Tumoral alfa
10.
J Biol Chem ; 297(6): 101410, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34785214

RESUMEN

Pluripotent stem cells are known to shift their mitochondrial metabolism upon differentiation, but the mechanisms underlying such metabolic rewiring are not fully understood. We hypothesized that during differentiation of human induced pluripotent stem cells (hiPSCs), mitochondria undergo mitophagy and are then replenished by the biogenesis of new mitochondria adapted to the metabolic needs of the differentiated cell. To evaluate mitophagy during iPSC differentiation, we performed live cell imaging of mitochondria and lysosomes in hiPSCs differentiating into vascular endothelial cells using confocal microscopy. We observed a burst of mitophagy during the initial phases of hiPSC differentiation into the endothelial lineage, followed by subsequent mitochondrial biogenesis as assessed by the mitochondrial biogenesis biosensor MitoTimer. Furthermore, hiPSCs undergoing differentiation showed greater mitochondrial oxidation of fatty acids and an increase in ATP levels as assessed by an ATP biosensor. We also found that during mitophagy, the mitochondrial phosphatase PGAM5 is cleaved in hiPSC-derived endothelial progenitor cells and in turn activates ß-catenin-mediated transcription of the transcriptional coactivator PGC-1α, which upregulates mitochondrial biogenesis. These data suggest that mitophagy itself initiates the increase in mitochondrial biogenesis and oxidative metabolism through transcriptional changes during endothelial cell differentiation. In summary, these findings reveal a mitophagy-mediated mechanism for metabolic rewiring and maturation of differentiating cells via the ß-catenin signaling pathway. We propose that such mitochondrial-nuclear cross talk during hiPSC differentiation could be leveraged to enhance the metabolic maturation of differentiated cells.


Asunto(s)
Reprogramación Celular , Células Endoteliales , Células Madre Pluripotentes Inducidas/metabolismo , Mitofagia , Humanos , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Fosfoproteínas Fosfatasas/metabolismo , Transcripción Genética , beta Catenina/metabolismo
11.
Nat Commun ; 12(1): 2736, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980844

RESUMEN

Endothelial barrier integrity is ensured by the stability of the adherens junction (AJ) complexes comprised of vascular endothelial (VE)-cadherin as well as accessory proteins such as ß-catenin and p120-catenin. Disruption of the endothelial barrier due to disassembly of AJs results in tissue edema and the influx of inflammatory cells. Using three-dimensional structured illumination microscopy, we observe that the mitochondrial protein Mitofusin-2 (Mfn2) co-localizes at the plasma membrane with VE-cadherin and ß-catenin in endothelial cells during homeostasis. Upon inflammatory stimulation, Mfn2 is sulfenylated, the Mfn2/ß-catenin complex disassociates from the AJs and Mfn2 accumulates in the nucleus where Mfn2 negatively regulates the transcriptional activity of ß-catenin. Endothelial-specific deletion of Mfn2 results in inflammatory activation, indicating an anti-inflammatory role of Mfn2 in vivo. Our results suggest that Mfn2 acts in a non-canonical manner to suppress the inflammatory response by stabilizing cell-cell adherens junctions and by binding to the transcriptional activator ß-catenin.


Asunto(s)
Uniones Adherentes/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/metabolismo , beta Catenina/metabolismo , Animales , Antígenos CD/metabolismo , Western Blotting , Cadherinas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Femenino , Humanos , Inmunoprecipitación , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología
12.
Methods Mol Biol ; 2169: 71-80, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32548820

RESUMEN

The detection of dynamic conformational changes in proteins in live cells is challenging. Live-cell FRET (Förster Resonance Energy Transfer) is an example of a noninvasive technique that can be used to achieve this goal at nanometer resolution. FRET-based assays are dependent on the presence of fluorescent probes, such as CFP- and YFP-conjugated protein pairs. Here, we describe an experimental protocol in which live-cell FRET was used to measure conformational changes in caveolin-1 (Cav-1) oligomers on the surface of plasmalemma vesicles, or caveolae.


Asunto(s)
Caveolas/metabolismo , Caveolina 1/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Caveolina 1/genética , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Fosforilación , Transfección
13.
Sci Rep ; 10(1): 9976, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561770

RESUMEN

Results from epidemiological and prospective studies indicate a close association between periodontitis and diabetes. However the mechanisms by which periodontal pathogens influence the development of prediabetes/diabetes are not clear. We previously reported that oral administration of a periodontal pathogen, Porphyromonas gingivalis (Pg) to WT mice results in insulin resistance, hyperinsulinemia, and glucose intolerance and that Pg translocates to the pancreas. In the current study, we determined the specific localization of Pg in relation to mouse and human pancreatic α- and ß-cells using 3-D confocal and immunofluorescence microscopy and orthogonal analyses. Pg/gingipain is intra- or peri-nuclearly localized primarily in ß-cells in experimental mice and also in human post-mortem pancreatic samples. We also identified bihormonal cells in experimental mice as well as human pancreatic samples. A low percentage of bihormonal cells has intracellular Pg in both humans and experimental mice. Our data show that the number of Pg translocated to the pancreas correlates with the number of bihormonal cells in both mice and humans. Our findings suggest that Pg/gingipain translocates to pancreas, particularly ß-cells in both humans and mice, and this is strongly associated with emergence of bihormonal cells.


Asunto(s)
Islotes Pancreáticos/microbiología , Periodontitis/microbiología , Porphyromonas gingivalis/aislamiento & purificación , Animales , Infecciones por Bacteroidaceae/microbiología , Diabetes Mellitus/etiología , Diabetes Mellitus/microbiología , Modelos Animales de Enfermedad , Estudios Epidemiológicos , Intolerancia a la Glucosa/microbiología , Humanos , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Periodontitis/complicaciones , Estado Prediabético/etiología , Estado Prediabético/microbiología , Estudios Prospectivos
14.
Mol Biol Cell ; 31(11): 1167-1182, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32238105

RESUMEN

Caveolae, the cave-like structures abundant in endothelial cells (ECs), are important for multiple signaling processes such as production of nitric oxide and caveolae-mediated intracellular trafficking. Using superresolution microscopy, fluorescence resonance energy transfer, and biochemical analysis, we observed that the EphB1 receptor tyrosine kinase constitutively interacts with caveolin-1 (Cav-1), the key structural protein of caveolae. Activation of EphB1 with its ligand Ephrin B1 induced EphB1 phosphorylation and the uncoupling EphB1 from Cav-1 and thereby promoted phosphorylation of Cav-1 by Src. Deletion of Cav-1 scaffold domain binding (CSD) motif in EphB1 prevented EphB1 binding to Cav-1 as well as Src-dependent Cav-1 phosphorylation, indicating the importance of CSD in the interaction. We also observed that Cav-1 protein expression and caveolae numbers were markedly reduced in ECs from EphB1-deficient (EphB1-/-) mice. The loss of EphB1 binding to Cav-1 promoted Cav-1 ubiquitination and degradation, and hence the loss of Cav-1 was responsible for reducing the caveolae numbers. These studies identify the crucial role of EphB1/Cav-1 interaction in the biogenesis of caveolae and in coordinating the signaling function of Cav-1 in ECs.


Asunto(s)
Caveolas/metabolismo , Receptor EphB1/metabolismo , Animales , Caveolas/fisiología , Caveolina 1/metabolismo , Células Endoteliales/metabolismo , Efrina-B1/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Fosforilación , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor EphB1/fisiología , Transducción de Señal/fisiología
15.
Elife ; 92020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31944177

RESUMEN

Blood vessels are lined by endothelial cells engaged in distinct organ-specific functions but little is known about their characteristic gene expression profiles. RNA-Sequencing of the brain, lung, and heart endothelial translatome identified specific pathways, transporters and cell-surface markers expressed in the endothelium of each organ, which can be visualized at http://www.rehmanlab.org/ribo. We found that endothelial cells express genes typically found in the surrounding tissues such as synaptic vesicle genes in the brain endothelium and cardiac contractile genes in the heart endothelium. Complementary analysis of endothelial single cell RNA-Seq data identified the molecular signatures shared across the endothelial translatome and single cell transcriptomes. The tissue-specific heterogeneity of the endothelium is maintained during systemic in vivo inflammatory injury as evidenced by the distinct responses to inflammatory stimulation. Our study defines endothelial heterogeneity and plasticity and provides a molecular framework to understand organ-specific vascular disease mechanisms and therapeutic targeting of individual vascular beds.


Blood vessels supply nutrients, oxygen and other key molecules to all of the organs in the body. Cells lining the blood vessels, called endothelial cells, regulate which molecules pass from the blood to the organs they supply. For example, brain endothelial cells prevent toxic molecules from getting into the brain, and lung endothelial cells allow immune cells into the lungs to fight off bacteria or viruses.Determining which genes are switched on in the endothelial cells of major organs might allow scientists to determine what endothelial cells do in the brain, heart, and lung, and how they differ; or help scientists deliver drugs to a particular organ. If endothelial cells from different organs switch on different groups of genes, each of these groups of genes can be thought of as a 'genetic signature' that identifies endothelial cells from a specific organ.Now, Jambusaria et al. show that brain, heart, and lung endothelial cells have distinct genetic signatures. The experiments used mice that had been genetically modified to have tags on their endothelial cells. These tags made it possible to isolate RNA ­ a molecule similar to DNA that contains the information about which genes are active ­ from endothelial cells without separating the cells from their tissue of origin. Next, RNA from endothelial cells in the heart, brain and lung was sequenced and analyzed.The results show that each endothelial cell type has a distinct genetic signature under normal conditions and infection-like conditions. Unexpectedly, the experiments also showed that genes that were thought to only be switched on in the cells of specific tissues are also on in the endothelial cells lining the blood vessels of the tissue. For example, genes switched on in brain cells are also active in brain endothelial cells, and genes allowing heart muscle cells to pump are also on in the endothelial cells of the heart blood vessels.The endothelial cell genetic signatures identified by Jambusaria et al. can be used as "postal codes" to target drugs to a specific organ via the endothelial cells that feed it. It might also be possible to use these genetic signatures to build organ-specific blood vessels from stem cells in the laboratory. Future work will try to answer why endothelial cells serving the heart and brain use genes from these organs.


Asunto(s)
Endotelio Vascular/citología , Homeostasis , Inflamación/patología , Animales , Encéfalo/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Expresión Génica , Humanos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , ARN Mensajero/genética
16.
Nat Commun ; 10(1): 2126, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31073164

RESUMEN

Repair of the endothelial cell barrier after inflammatory injury is essential for tissue fluid homeostasis and normalizing leukocyte transmigration. However, the mechanisms of endothelial regeneration remain poorly understood. Here we show that the endothelial and hematopoietic developmental transcription factor Sox17 promotes endothelial regeneration in the endotoxemia model of endothelial injury. Genetic lineage tracing studies demonstrate that the native endothelium itself serves as the primary source of endothelial cells repopulating the vessel wall following injury. We identify Sox17 as a key regulator of endothelial cell regeneration using endothelial-specific deletion and overexpression of Sox17. Endotoxemia upregulates Hypoxia inducible factor 1α, which in turn transcriptionally activates Sox17 expression. We observe that Sox17 increases endothelial cell proliferation via upregulation of Cyclin E1. Furthermore, endothelial-specific upregulation of Sox17 in vivo enhances lung endothelial regeneration. We conclude that endotoxemia adaptively activates Sox17 expression to mediate Cyclin E1-dependent endothelial cell regeneration and restore vascular homeostasis.


Asunto(s)
Ciclina E/genética , Endotelio Vascular/fisiopatología , Endotoxemia/patología , Proteínas HMGB/metabolismo , Proteínas Oncogénicas/genética , Regeneración/inmunología , Factores de Transcripción SOXF/metabolismo , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Ciclina E/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Endotoxemia/inmunología , Células HEK293 , Proteínas HMGB/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Oncogénicas/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción SOXF/genética , Transducción de Señal/fisiología , Regulación hacia Arriba
17.
PLoS One ; 14(3): e0214072, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30897138

RESUMEN

End stage temporomandibular joint osteoarthritis (TMJ-OA) is characterized by fibrillations, fissures, clefts, and erosion of the mandibular condylar cartilage. The goal of this study was to define changes in pericellular and interterritorial delineations of the extracellular matrix (ECM) that occur preceding and concurrent with the development of this end stage degeneration in a murine surgical instability model. Two-photon fluorescence (TPF) and second harmonic generation (SHG) microscopy was used to evaluate TMJ-OA mediated changes in the ECM. We illustrate that TPF/SHG microscopy reconstructs the three-dimensional network of key fibrillar and micro-fibrillar collagens altered during the progression of TMJ-OA. This method not only generates spatially distinct pericellular and interterritorial delineations of the ECM but distinguishes early and end stage TMJ-OA by signal organization, orientation, and composition. Early stage TMJ-OA at 4- and 8-weeks post-injury is characterized by two structurally distinct regions containing dense, large fiber collagens and superficial, small fiber collagens rich in types I, III, and VI collagen oriented along the mesiodistal axis of the condyle. At 8-weeks post-injury, type VI collagen is locally diminished on the central and medial condyle, but the type I/III rich superficial layer is still present. Twelve- and 16-weeks post-injury mandibular cartilage is characteristic of end-stage disease, with hypocellularity and fibrillations, fissures, and clefts in the articular layer that propagate along the mediolateral axis of the MCC. We hypothesize that the localized depletion of interterritorial and pericellular type VI collagen may signify an early marker for the transition from early to end stage TMJ-OA, influence the injury response of the tissue, and underlie patterns of degeneration that follow attritional modes of failure.


Asunto(s)
Matriz Extracelular/patología , Osteoartritis/patología , Articulación Temporomandibular/patología , Animales , Colágeno/análisis , Masculino , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Osteoartritis/diagnóstico por imagen , Microscopía de Generación del Segundo Armónico , Articulación Temporomandibular/diagnóstico por imagen , Articulación Temporomandibular/lesiones
18.
PLoS One ; 13(10): e0204941, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30281647

RESUMEN

BACKGROUND: The results from cross sectional and longitudinal studies show that periodontitis is closely associated with cognitive impairment (CI) and Alzhemer's Disease (AD). Further, studies using animal model of periodontitis and human post-mortem brain tissues from subjects with AD strongly suggest that a gram-negative periodontal pathogen, Porphyromonas gingivalis (Pg) and/or its product gingipain is/are translocated to the brain. However, neuropathology resulting from Pg oral application is not known. In this work, we tested the hypothesis that repeated exposure of wild type C57BL/6 mice to orally administered Pg results in neuroinflammation, neurodegeneration, microgliosis, astrogliosis and formation of intra- and extracellular amyloid plaque and neurofibrillary tangles (NFTs) which are pathognomonic signs of AD. METHODS: Experimental chronic periodontitis was induced in ten wild type 8-week old C57BL/6 WT mice by repeated oral application (MWF/week) of Pg/gingipain for 22 weeks (experimental group). Another 10 wild type 8-week old C57BL/6 mice received vehicle alone (control group) MWF per week for 22 weeks. Brain tissues were collected and the presence of Pg/gingipain was determined by immunofluorescence (IF) microscopy, confocal microscopy, and quantitative PCR (qPCR). The hippocampi were examined for the signs of neuropathology related to AD: TNFα, IL1ß, and IL6 expression (neuroinflammation), NeuN and Fluoro Jade C staining (neurodegeneration) and amyloid beta1-42 (Aß42) production and phosphorylation of tau protein at Ser396 were assessed by IF and confocal microscopy. Further, gene expression of amyloid precursor protein (APP), beta-site APP cleaving enzyme 1 (BACE1), a disintegrin and metalloproteinase domain-containing protein10 (ADAM10) for α-secretase and presenilin1 (PSEN1) for É£-secretase, and NeuN (rbFox3) were determined by RT-qPCR. Microgliosis and astrogliosis were also determined by IF microscopy. RESULTS: Pg/gingipain was detected in the hippocampi of mice in the experimental group by immunohistochemistry, confocal microscopy, and qPCR confirming the translocation of orally applied Pg to the brain. Pg/gingipain was localized intra-nuclearly and peri-nuclearly in microglia (Iba1+), astrocytes (GFAP+), neurons (NeuN+) and was evident extracellularly. Significantly greater levels of expression of IL6, TNFα and IL1ß were evident in experimental as compared to control group (p<0.01, p<0.00001, p<0.00001 respectively). In addition, microgliosis and astrogliosis were evident in the experimental but not in control group (p <0.01, p<0.0001 respectively). Neurodegeneration was evident in the experimental group based on a fewer number of intact neuronal cells assessed by NeuN positivity and rbFOX3 gene expression, and there was a greater number of degenerating neurons in the hippocampi of experimental mice assessed by Fluoro Jade C positivity. APP and BACE1 gene expression were increased in experimental group compared with control group (p<0.05, p<0.001 respectively). PSEN1 gene expression was higher in experimental than control group but the difference was not statistically significant (p = 0.07). ADAM10 gene expression was significantly decreased in experimental group compared with control group (p<0.01). Extracellular Aß42 was detected in the parenchyma in the experimental but not in the control group (p< 0.00001). Finally, phospho-Tau (Ser396) protein was detected and NFTs were evident in experimental but not in the control group (p<0.00001). CONCLUSIONS: This study is the first to show neurodegeneration and the formation of extracellular Aß42 in young adult WT mice after repeated oral application of Pg. The neuropathological features observed in this study strongly suggest that low grade chronic periodontal pathogen infection can result in the development of neuropathology that is consistent with that of AD.


Asunto(s)
Enfermedad de Alzheimer/microbiología , Péptidos beta-Amiloides/biosíntesis , Disfunción Cognitiva/microbiología , Encefalitis/microbiología , Fragmentos de Péptidos/biosíntesis , Periodontitis/microbiología , Porphyromonas gingivalis/fisiología , Proteína ADAM10/genética , Administración Oral , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Astrocitos/patología , Recuento de Células , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Estudios Transversales , Proteínas de Unión al ADN , Encefalitis/genética , Encefalitis/metabolismo , Encefalitis/patología , Lóbulo Frontal/patología , Regulación de la Expresión Génica , Hipocampo/metabolismo , Hipocampo/patología , Espacio Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/metabolismo , Presenilina-1/genética , Proteínas tau/metabolismo
19.
Cell Rep ; 23(12): 3565-3578, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29924999

RESUMEN

Mitochondrial dynamics are tightly controlled by fusion and fission, and their dysregulation and excess reactive oxygen species (ROS) contribute to endothelial cell (EC) dysfunction. How redox signals regulate coupling between mitochondrial dynamics and endothelial (dys)function remains unknown. Here, we identify protein disulfide isomerase A1 (PDIA1) as a thiol reductase for the mitochondrial fission protein Drp1. A biotin-labeled Cys-OH trapping probe and rescue experiments reveal that PDIA1 depletion in ECs induces sulfenylation of Drp1 at Cys644, promoting mitochondrial fragmentation and ROS elevation without inducing ER stress, which drives EC senescence. Mechanistically, PDIA1 associates with Drp1 to reduce its redox status and activity. Defective wound healing and angiogenesis in diabetic or PDIA1+/- mice are restored by EC-targeted PDIA1 or the Cys oxidation-defective mutant Drp1. Thus, this study uncovers a molecular link between PDIA1 and Drp1 oxidoreduction, which maintains normal mitochondrial dynamics and limits endothelial senescence with potential translational implications for vascular diseases associated with diabetes or aging.


Asunto(s)
Senescencia Celular , Dinaminas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Dinámicas Mitocondriales , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Respiración de la Célula , Cisteína/metabolismo , Diabetes Mellitus Tipo 2/patología , Estrés del Retículo Endoplásmico , Humanos , Ratones , Mitocondrias/metabolismo , Mutación/genética , Oxidación-Reducción , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas
20.
Circulation ; 135(25): 2505-2523, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28381471

RESUMEN

BACKGROUND: The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. METHODS: CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. RESULTS: Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. CONCLUSIONS: Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and erythroblasts in a SOX17-dependent manner. These findings identify the intermediate CD34+ progenitor state as a critical bifurcation point, which can be tuned to generate functional blood vessels or erythrocytes and salvage ischemic tissue.


Asunto(s)
Antígenos CD34/fisiología , Desdiferenciación Celular/fisiología , Células Endoteliales/fisiología , Eritroblastos/fisiología , Fibroblastos/fisiología , Factores de Transcripción SOXF/fisiología , Células Madre/fisiología , Animales , Células Cultivadas , Humanos , Recién Nacido , Ratones , Ratones Endogámicos NOD , Ratones SCID
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...