Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mutat Res ; 819-820: 111690, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32120136

RESUMEN

The serine/threonine kinase AKT, also known as protein kinase B (PKB), is the major substrate to phosphoinositide 3-kinase (PI3K) and consists of three paralogs: AKT1 (PKBα), AKT2 (PKBß) and AKT3 (PKBγ). The PI3K/AKT pathway is normally activated by binding of ligands to membrane-bound receptor tyrosine kinases (RTKs) as well as downstream to G-protein coupled receptors and integrin-linked kinase. Through multiple downstream substrates, activated AKT controls a wide variety of cellular functions including cell proliferation, survival, metabolism, and angiogenesis in both normal and malignant cells. In human cancers, the PI3K/AKT pathway is most frequently hyperactivated due to mutations and/or overexpression of upstream components. Aberrant expression of RTKs, gain of function mutations in PIK3CA, RAS, PDPK1, and AKT itself, as well as loss of function mutation in AKT phosphatases are genetic lesions that confer hyperactivation of AKT. Activated AKT stimulates DNA repair, e.g. double strand break repair after radiotherapy. Likewise, AKT attenuates chemotherapy-induced apoptosis. These observations suggest that a crucial link exists between AKT and DNA damage. Thus, AKT could be a major predictive marker of conventional cancer therapy, molecularly targeted therapy, and immunotherapy for solid tumors. In this review, we summarize the current understanding by which activated AKT mediates resistance to cancer treatment modalities, i.e. radiotherapy, chemotherapy, and RTK targeted therapy. Next, the effect of AKT on response of tumor cells to RTK targeted strategies will be discussed. Finally, we will provide a brief summary on the clinical trials of AKT inhibitors in combination with radiochemotherapy, RTK targeted therapy, and immunotherapy.


Asunto(s)
ADN de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Terapia Molecular Dirigida/métodos , Neoplasias/terapia , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Daño del ADN , Reparación del ADN/efectos de los fármacos , ADN de Neoplasias/metabolismo , Rayos gamma/uso terapéutico , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Resultado del Tratamiento , Proteínas ras/genética , Proteínas ras/metabolismo
2.
Strahlenther Onkol ; 188(9): 823-32, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22875052

RESUMEN

PURPOSE: Anti-EGFR antibody cetuximab (C225) is used in combination with radiotherapy of head and neck squamous cell carcinoma (HNSCC) patients. We investigated whether conjugation of cetuximab with trans-cyclohexyl-diethylene-triamine-pentaacetic acid (CHX-A″-DTPA) and radiolabeling with (90)Yttrium affect the molecular and cellular function of cetuximab and improve its combined effect with external-beam irradiation (EBI). METHODS: The following cell lines were used: HNSCC UT5, SAS, FaDu, as well as A43, Chinese hamster ovary cells (CHO), and human skin fibroblast HSF7. Binding affinity and kinetics, specificity, retention, and the combination of (90)Y-cetuximab with EBI were evaluated. RESULTS: Control cetuximab and CHX-A″-DTPA-cetuximab blocked the proliferation activity of UT5 cells. In combination with EBI, CHX-A″-DTPA-cetuximab increased the radiosensitivity of UT5 to a similar degree as control cetuximab did. In contrast, in SAS and HSF7 cells neither proliferation nor radiosensitivity was affected by either of the antibodies. Binding [(90)Y]Y-CHX-A″-DTPA-cetuximab ((90)Y-cetuximab) to EGFR in HNSCC cells occurred time dependently with a maximum binding at 24 h. Retention of (90)Y-cetuximab was similar in both HNSCC cell lines; 24 h after treatment, approximately 90% of bound activity remained in the cell layer. Competition assays, using cell membranes in the absence of an internalized fraction of cetuximab, showed that the cetuximab affinity is not lost as a result of conjugation with CHX-A″-DTPA. Cetuximab and CHX-A″-DTPA-cetuximab blocked EGF-induced Y1068 phosphorylation of EGFR. The lack of an effect of cetuximab on EGF-induced Akt and ERK1/2 phosphorylation and the inhibition of irradiation (IR)-induced Akt and ERK1/2 phosphorylation by cetuximab were not affected by DTPA conjugation. (90)Y-cetuximab in combination with EBI resulted in a pronounced inhibition of colony formation of HNSCC cells. CONCLUSIONS: Conjugation of CHX-A″-DTPA to cetuximab does not alter the cellular and biological function of cetuximab. (90)Y-labeling of cetuximab in combination with EBI may improve radiotherapy outcome.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Quimioradioterapia Adyuvante/métodos , Neoplasias Experimentales/fisiopatología , Neoplasias Experimentales/radioterapia , Radioterapia Conformacional/métodos , Radioisótopos de Itrio/administración & dosificación , Animales , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cetuximab , Cricetinae , Humanos , Dosis de Radiación
3.
Nuklearmedizin ; 49 Suppl 1: S26-30, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21152686

RESUMEN

Accumulated evidence indicates that activation of erbB family of receptors, when mutated or over-expressed, mediates chemo- and radiotherapy resistance. In this context signaling pathways down-stream of epidermal growth factor receptor (EGFR), when abnormally activated, invoke cell survival mechanisms, which leads to resistance against radiation. In several reports it has been demonstrated that molecular targeting of EGFR signaling enhances the cytotoxic effects of radiotherapy. The radiosensitizing effects of EGFR antagonists correlate with a suppression of the ability of tumor cells to repair radiation-induced DNA double strand breaks (DNA-DSBs) through non-homologous end-joining repair pathway (NHEJ). The purpose of this review is to highlight the function of EGFR and erbB2 receptors on signaling pathways, i. e. PI3K/Akt activated by ionizing radiation (IR) and involved in repair of DNA-DSB which can explain the radiosensitizing effects of related antagonists. Advances in understanding the mechanism of erbB-signaling in regulating DNA-DSB repair will promote translational approaches to test new strategies for clinically applicable molecular targeting.


Asunto(s)
Membrana Celular/fisiología , Daño del ADN/fisiología , Reparación del ADN/fisiología , Receptores ErbB/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal/fisiología , Animales , Membrana Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Exposición a Riesgos Ambientales , Humanos , Modelos Biológicos , Dosis de Radiación , Transducción de Señal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...