Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiome ; 12(1): 42, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424629

RESUMEN

BACKGROUND: Global warming is causing large-scale disruption of cnidarian-Symbiodiniaceae symbioses fundamental to major marine ecosystems, such as coral reefs. However, the mechanisms by which heat stress perturbs these symbiotic partnerships remain poorly understood. In this context, the upside-down jellyfish Cassiopea has emerged as a powerful experimental model system. RESULTS: We combined a controlled heat stress experiment with isotope labeling and correlative SEM-NanoSIMS imaging to show that host starvation is a central component in the chain of events that ultimately leads to the collapse of the Cassiopea holobiont. Heat stress caused an increase in catabolic activity and a depletion of carbon reserves in the unfed host, concurrent with a reduction in the supply of photosynthates from its algal symbionts. This state of host starvation was accompanied by pronounced in hospite degradation of algal symbionts, which may be a distinct feature of the heat stress response of Cassiopea. Interestingly, this loss of symbionts by degradation was concealed by body shrinkage of the starving animals, resulting in what could be referred to as "invisible" bleaching. CONCLUSIONS: Overall, our study highlights the importance of the nutritional status in the heat stress response of the Cassiopea holobiont. Compared with other symbiotic cnidarians, the large mesoglea of Cassiopea, with its structural sugar and protein content, may constitute an energy reservoir capable of delaying starvation. It seems plausible that this anatomical feature at least partly contributes to the relatively high stress tolerance of these animals in rapidly warming oceans. Video Abstract.


Asunto(s)
Antozoos , Cnidarios , Dinoflagelados , Animales , Ecosistema , Simbiosis/fisiología , Respuesta al Choque Térmico , Arrecifes de Coral , Dinoflagelados/fisiología , Antozoos/fisiología
2.
mSphere ; 9(1): e0032223, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38088556

RESUMEN

Medusae of the widely distributed upside-down jellyfish Cassiopea release autonomous, mobile stinging structures. These so-called cassiosomes play a role in predator defense and prey capture, and are major contributors to "contactless" stinging incidents in (sub-)tropical shallow waters. While the presence of endosymbiotic dinoflagellates in cassiosomes has previously been observed, their potential contribution to the metabolism and long-term survival of cassiosomes is unknown. Combining stable isotope labeling and correlative scanning electron microscopy and nanoscale secondary ion mass spectrometry imaging with a long-term in vitro experiment, our study reveals a mutualistic symbiosis based on nutritional exchanges in dinoflagellate-bearing cassiosomes. We show that organic carbon input from the dinoflagellates fuels the metabolism of the host tissue and enables anabolic nitrogen assimilation. This symbiotic nutrient exchange enhances the life span of cassiosomes for at least one month in vitro. Overall, our study demonstrates that cassiosomes, in analogy with Cassiopea medusae, are photosymbiotic holobionts. Cassiosomes, which are easily accessible under aquarium conditions, promise to be a powerful new miniaturized model system for in-depth ultrastructural and molecular investigation of cnidarian photosymbioses.IMPORTANCEThe upside-down jellyfish Cassiopea releases autonomous tissue structures, which are a major cause of contactless stinging incidents in (sub-) tropical coastal waters. These so-called cassiosomes frequently harbor algal symbionts, yet their role in cassiosome functioning and survival is unknown. Our results show that cassiosomes are metabolically active and supported by algal symbionts. Algal photosynthesis enhances the cassiosomes long-term survival in the light. This functional understanding of cassiosomes thereby contributes to explaining the prevalence of contactless stinging incidents and the ecological success of some Cassiopea species. Finally, we show that cassiosomes are miniaturized symbiotic holobionts that can be used to study host-microbe interactions in a simplified system.


Asunto(s)
Dinoflagelados , Simbiosis , Nitrógeno/metabolismo , Carbono/metabolismo , Fotosíntesis
3.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37816123

RESUMEN

Genetic variation is instrumental for adaptation to changing environments but it is unclear how it is structured and contributes to adaptation in pelagic species lacking clear barriers to gene flow. Here, we applied comparative genomics to extensive transcriptome datasets from 20 krill species collected across the Atlantic, Indian, Pacific, and Southern Oceans. We compared genetic variation both within and between species to elucidate their evolutionary history and genomic bases of adaptation. We resolved phylogenetic interrelationships and uncovered genomic evidence to elevate the cryptic Euphausia similis var. armata into species. Levels of genetic variation and rates of adaptive protein evolution vary widely. Species endemic to the cold Southern Ocean, such as the Antarctic krill Euphausia superba, showed less genetic variation and lower evolutionary rates than other species. This could suggest a low adaptive potential to rapid climate change. We uncovered hundreds of candidate genes with signatures of adaptive evolution among Antarctic Euphausia but did not observe strong evidence of adaptive convergence with the predominantly Arctic Thysanoessa. We instead identified candidates for cold-adaptation that have also been detected in Antarctic fish, including genes that govern thermal reception such as TrpA1. Our results suggest parallel genetic responses to similar selection pressures across Antarctic taxa and provide new insights into the adaptive potential of important zooplankton already affected by climate change.


Asunto(s)
Euphausiacea , Animales , Euphausiacea/genética , Filogenia , Transcriptoma , Perfilación de la Expresión Génica , Genómica , Regiones Antárticas
4.
Environ Sci Technol ; 57(16): 6664-6672, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37058431

RESUMEN

Many researchers have turned their attention to understanding microplastic interaction with marine fauna. Efforts are being made to monitor exposure pathways and concentrations and to assess the impact such interactions may have. To answer these questions, it is important to select appropriate experimental parameters and analytical protocols. This study focuses on medusae of Cassiopea andromeda jellyfish: a unique benthic jellyfish known to favor (sub-)tropical coastal regions which are potentially exposed to plastic waste from land-based sources. Juvenile medusae were exposed to fluorescent poly(ethylene terephthalate) and polypropylene microplastics (<300 µm), resin embedded, and sectioned before analysis with confocal laser scanning microscopy as well as transmission electron microscopy and Raman spectroscopy. Results show that the fluorescent microplastics were stable enough to be detected with the optimized analytical protocol presented and that their observed interaction with medusae occurs in a manner which is likely driven by the microplastic properties (e.g., density and hydrophobicity).


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Espectrometría Raman , Flujo de Trabajo , Microscopía Electrónica , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
5.
Front Physiol ; 13: 819111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222085

RESUMEN

The cnidarian-dinoflagellate symbiosis is a mutualistic intracellular association based on the photosynthetic activity of the endosymbiont. This relationship involves significant constraints and requires co-evolution processes, such as an extensive capacity of the holobiont to counteract pro-oxidative conditions induced by hyperoxia generated during photosynthesis. In this study, we analyzed the capacity of Anemonia viridis cells to deal with pro-oxidative conditions by in vivo and in vitro approaches. Whole specimens and animal primary cell cultures were submitted to 200 and 500 µM of H2O2 during 7 days. Then, we monitored global health parameters (symbiotic state, viability, and cell growth) and stress biomarkers (global antioxidant capacity, oxidative protein damages, and protein ubiquitination). In animal primary cell cultures, the intracellular reactive oxygen species (ROS) levels were also evaluated under H2O2 treatments. At the whole organism scale, both H2O2 concentrations didn't affect the survival and animal tissues exhibited a high resistance to H2O2 treatments. Moreover, no bleaching has been observed, even at high H2O2 concentration and after long exposure (7 days). Although, the community has suggested the role of ROS as the cause of bleaching, our results indicating the absence of bleaching under high H2O2 concentration may exculpate this specific ROS from being involved in the molecular processes inducing bleaching. However, counterintuitively, the symbiont compartment appeared sensitive to an H2O2 burst as it displayed oxidative protein damages, despite an enhancement of antioxidant capacity. The in vitro assays allowed highlighting an intrinsic high capacity of isolated animal cells to deal with pro-oxidative conditions, although we observed differences on tolerance between H2O2 treatments. The 200 µM H2O2 concentration appeared to correspond to the tolerance threshold of animal cells. Indeed, no disequilibrium on redox state was observed and only a cell growth decrease was measured. Contrarily, the 500 µM H2O2 concentration induced a stress state, characterized by a cell viability decrease from 1 day and a drastic cell growth arrest after 7 days leading to an uncomplete recovery after treatment. In conclusion, this study highlights the overall high capacity of cnidarian cells to cope with H2O2 and opens new perspective to investigate the molecular mechanisms involved in this peculiar resistance.

6.
Front Microbiol ; 12: 637834, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897642

RESUMEN

Aiptasia is an emerging model organism to study cnidarian symbioses due to its taxonomic relatedness to other anthozoans such as stony corals and similarities of its microalgal and bacterial partners, complementing the existing Hydra (Hydrozoa) and Nematostella (Anthozoa) model systems. Despite the availability of studies characterizing the microbiomes of several natural Aiptasia populations and laboratory strains, knowledge on basic information, such as surface topography, bacterial carrying capacity, or the prospect of microbiome manipulation is lacking. Here we address these knowledge gaps. Our results show that the surface topographies of the model hydrozoan Hydra and anthozoans differ substantially, whereas the ultrastructural surface architecture of Aiptasia and stony corals is highly similar. Further, we determined a bacterial carrying capacity of ∼104 and ∼105 bacteria (i.e., colony forming units, CFUs) per polyp for aposymbiotic and symbiotic Aiptasia anemones, respectively, suggesting that the symbiotic status changes bacterial association/density. Microbiome transplants from Acropora humilis and Porites sp. to gnotobiotic Aiptasia showed that only a few foreign bacterial taxa were effective colonizers. Our results shed light on the putative difficulties of transplanting microbiomes between cnidarians in a manner that consistently changes microbial host association at large. At the same time, our study provides an avenue to identify bacterial taxa that exhibit broad ability to colonize different hosts as a starting point for cross-species microbiome manipulation. Our work is relevant in the context of microbial therapy (probiotics) and microbiome manipulation in corals and answers to the need of having cnidarian model systems to test the function of bacteria and their effect on holobiont biology. Taken together, we provide important foundation data to extend Aiptasia as a coral model for bacterial functional studies.

7.
J Exp Biol ; 223(Pt 21)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32967994

RESUMEN

At fledging, juvenile king penguins (Aptenodytes patagonicus) must overcome the tremendous energetic constraints imposed by their marine habitat, including during sustained extensive swimming activity and deep dives in cold seawater. Both endurance swimming and skeletal muscle thermogenesis require high mitochondrial respiratory capacity while the submerged part of dive cycles repeatedly and greatly reduces oxygen availability, imposing a need for solutions to conserve oxygen. The aim of the present study was to determine in vitro whether skeletal muscle mitochondria become more 'thermogenic' to sustain heat production or more 'economical' to conserve oxygen in sea-acclimatized immature penguins (hereafter 'immatures') compared with terrestrial juveniles. Rates of mitochondrial oxidative phosphorylation were measured in permeabilized fibers and mitochondria from the pectoralis muscle. Mitochondrial ATP synthesis and coupling efficiency were measured in isolated muscle mitochondria. The mitochondrial activities of respiratory chain complexes and citrate synthase were also assessed. The results showed that respiration, ATP synthesis and respiratory chain complex activities in pectoralis muscles were increased by sea acclimatization. Furthermore, muscle mitochondria were on average 30-45% more energy efficient in sea-acclimatized immatures than in pre-fledging juveniles, depending on the respiratory substrate used (pyruvate, palmitoylcarnitine). Hence sea acclimatization favors the development of economical management of oxygen, decreasing the oxygen needed to produce a given amount of ATP. This mitochondrial phenotype may improve dive performance during the early marine life of king penguins, by extending their aerobic dive limit.


Asunto(s)
Spheniscidae , Animales , Metabolismo Energético , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo
8.
Commun Biol ; 3(1): 362, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647198

RESUMEN

Correlative light and electron microscopy allows localization of specific molecules at the ultrastructural level in biological tissue but does not provide information about metabolic turnover or the distribution of labile molecules, such as micronutrients. We present a method to directly correlate (immuno)fluorescent microscopy, (immuno)TEM imaging and NanoSIMS isotopic mapping of the same tissue section, with nanometer-scale spatial precision. The process involves chemical fixation of the tissue, cryo sectioning, thawing, and air-drying under a thin film of polyvinyl alcohol. It permits to effectively retain labile compounds and strongly increases NanoSIMS sensitivity for 13C-enrichment. The method is illustrated here with correlated distribution maps of a carbonic anhydrase enzyme isotype, ß-tubulin proteins, and 13C- and 15N-labeled labile micronutrients (and their anabolic derivates) within the tissue of a reef-building symbiotic coral. This broadly applicable workflow expands the wealth of information that can be obtained from multi-modal, sub-cellular observation of biological tissue.


Asunto(s)
Antozoos/metabolismo , Antozoos/ultraestructura , Radioisótopos de Carbono/análisis , Microscopía Electrónica de Transmisión de Rastreo/métodos , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Radioisótopos de Nitrógeno/análisis , Animales , Procesamiento de Imagen Asistido por Computador/métodos
9.
Elife ; 92020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039759

RESUMEN

Transport of fluids, molecules, nutrients or nanoparticles through coral tissues are poorly documented. Here, we followed the flow of various tracers from the external seawater to within the cells of all tissues in living animals. After entering the general coelenteric cavity, we show that nanoparticles disperse throughout the tissues via the paracellular pathway. Then, the ubiquitous entry gate to within the cells' cytoplasm is macropinocytosis. Most cells form large vesicles of 350-600 nm in diameter at their apical side, continuously internalizing their surrounding medium. Macropinocytosis was confirmed using specific inhibitors of PI3K and actin polymerization. Nanoparticle internalization dynamics is size dependent and differs between tissues. Furthermore, we reveal that macropinocytosis is likely a major endocytic pathway in other anthozoan species. The fact that nearly all cells of an animal are continuously soaking in the environment challenges many aspects of the classical physiology viewpoints acquired from the study of bilaterians.


Asunto(s)
Antozoos/metabolismo , Antozoos/fisiología , Pinocitosis/fisiología , Actinas/antagonistas & inhibidores , Actinas/metabolismo , Animales , Citoplasma/metabolismo , Dextranos/análisis , Dextranos/metabolismo , Difusión , Modelos Biológicos , Nanopartículas/análisis , Nanopartículas/metabolismo
10.
J Exp Biol ; 220(Pt 13): 2445-2451, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28455442

RESUMEN

In the final stage of fasting, skeletal muscle mass and protein content drastically decrease when the maintenance of efficient locomotor activity becomes crucial for animals to reactivate feeding behaviour and survive a very long period of starvation. As mitochondrial metabolism represents the main physiological link between the endogenous energy store and animal performance, the aim of this study was to determine how a very long, natural period of fasting affected skeletal muscle mitochondrial bioenergetics in king penguin (Aptenodytes patagonicus) chicks. Rates of mitochondrial oxidative phosphorylation were measured in pectoralis permeabilized fibres and isolated mitochondria. Mitochondrial ATP synthesis efficiency and the activities of respiratory chain complexes were measured in mitochondria isolated from pectoralis muscle. Results from long-term (4-5 months) naturally fasted chicks were compared with those from short-term (10 day) fasted birds. The respiratory activities of muscle fibres and isolated mitochondria were reduced by 60% and 45%, respectively, on average in long-term fasted chicks compared with short-term fasted birds. Oxidative capacity and mitochondrial content of pectoralis muscle were lowered by long-term fasting. Bioenergetic analysis of pectoralis muscle also revealed that mitochondria were, on average, 25% more energy efficient in the final stage of fasting (4-5 months) than after 10 days of fasting (short-term fasted birds). These results suggest that the strong reduction in respiratory capacity of pectoralis muscle was partly alleviated by increased mitochondrial ATP synthesis efficiency. Such oxidative phosphorylation optimization can impact animal performance, e.g. the metabolic cost of locomotion or the foraging efficiency.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Ayuno , Fosforilación Oxidativa , Músculos Pectorales/metabolismo , Adenosina Trifosfato , Animales , Femenino , Masculino , Mitocondrias/metabolismo , Consumo de Oxígeno , Spheniscidae/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...