Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Planta ; 255(2): 30, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34981205

RESUMEN

MAIN CONCLUSION: Transcriptome analysis of Leucojum aestivum led to the identification of 50 key genes associated with Amaryllidaceae alkaloid biosynthesis including norbelladine synthase which localized in the cytosol and catalyzed norbelladine formation. The Amaryllidaceae alkaloids (AAs) are a large group of plant specialized metabolites, which are known for their biological activities. Although the general chemical reactions in the AA biosynthetic pathway have been proposed, the genes and enzymes of the pathway remain largely unstudied. All AAs are synthesized from a common precursor, norbelladine, by the condensation of tyramine and 3,4-dihydroxybenzaldehyde. The enzyme norbelladine synthase (NBS) which catalyzes the condensation reaction has only been characterized at a molecular level from one species, and the subcellular localizations have not been explored. Hence, the intracellular compartments wherein the AAs are biosynthesized remain unknown. In this study, a first comprehensive transcriptomic analysis of summer snowflake (Leucojum aestivum) was done to identify key genes associated with AA biosynthesis. Fifty orthologous genes were identified and deposited into GenBank. In addition, we identified and further characterized NBS from the transcriptome of L. aestivum and previously reported Narcissus papyraceus. Phylogenetic analysis showed that LaNBS, NpNBS1 and NpNBS2 shared high amino acid identity. The heterologous expression of LaNBS produced a recombinant protein with NBS activity. Bioinformatic prediction and C-terminal GFP tagging in transiently transformed Nicotiana benthamiana showed that LaNBS, NpNBS1 and NpNBS2 were likely localized to the cytosol which suggests that the AA biosynthesis starts in the cytosol. This study provides an Amaryllidaceae transcriptome that will be very helpful to identify genes for characterization studies in AA metabolism in planta or using heterologous systems. In addition, our study will facilitate the bioengineering of AA biosynthetic pathway in plants or in microorganisms.


Asunto(s)
Amaryllidaceae , Perfilación de la Expresión Génica , Filogenia , Transcriptoma , Tiramina/análogos & derivados
2.
BMC Plant Biol ; 18(1): 338, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30526483

RESUMEN

BACKGROUND: Amaryllidaceae alkaloids (AAs) are a large group of plant-specialized metabolites displaying an array of biological and pharmacological properties. Previous investigations on AA biosynthesis have revealed that all AAs share a common precursor, norbelladine, presumably synthesized by an enzyme catalyzing a Mannich reaction involving the condensation of tyramine and 3,4-dihydroxybenzaldehyde. Similar reactions have been reported. Specifically, norcoclaurine synthase (NCS) which catalyzes the condensation of dopamine and 4-hydroxyphenylacetaldehyde as the first step in benzylisoquinoline alkaloid biosynthesis. RESULTS: With the availability of wild daffodil (Narcissus pseudonarcissus) database, a transcriptome-mining search was performed for NCS orthologs. A candidate gene sequence was identified and named norbelladine synthase (NBS). NpNBS encodes for a small protein of 19 kDa with an anticipated pI of 5.5. Phylogenetic analysis showed that NpNBS belongs to a unique clade of PR10/Bet v1 proteins and shared 41% amino acid identity to opium poppy NCS1. Expression of NpNBS cDNA in Escherichia coli produced a recombinant enzyme able to condense tyramine and 3,4-DHBA into norbelladine as determined by high-resolution tandem mass spectrometry. CONCLUSIONS: Here, we describe a novel enzyme catalyzing the first committed step of AA biosynthesis, which will facilitate the establishment of metabolic engineering and synthetic biology platforms for the production of AAs.


Asunto(s)
Alcaloides de Amaryllidaceae/metabolismo , Amaryllidaceae/enzimología , Proteínas de Plantas/metabolismo , Tiramina/análogos & derivados , Amaryllidaceae/genética , Amaryllidaceae/metabolismo , Secuencia de Aminoácidos , Benzaldehídos/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Catecoles/metabolismo , Clonación Molecular , Filogenia , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Tiramina/biosíntesis , Tiramina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...